A GENERAL MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF STOCHASTIC DIFFERENTIAL DELAY SYSTEMS*

WEIJUN MENG ${ }^{\dagger}$, JINGTAO SHI ‡, TIANXIAO WANG ${ }^{\S}$, AND JI-FENG ZHANG ${ }^{〔}$

Abstract

In this paper, we solve an open problem and obtain a general maximum principle for a stochastic optimal control problem where the control domain is an arbitrary non-empty set and all the coefficients (especially the diffusion term and the terminal cost) contain the control and state delay. In order to overcome the difficulty of dealing with the cross term of state and its delay in the variational inequality, we propose a new method: transform a delayed variational equation into a Volterra integral equation without delay, and introduce novel first-order, second-order adjoint equations via the backward stochastic Volterra integral equation theory. Finally we express these two kinds of adjoint equations in more compact anticipated backward stochastic differential equation types for several special yet typical control systems.

Key words. stochastic differential delay systems, general maximum principle, backward stochastic Volterra integral equations, second-order adjoint equations, non-convex control domain

AMS subject classifications. 93E20, 60H20, 34K50

1. Introduction. The study of optimal control problem has been a hot topic for decades, and maximum principle has been one of the main approaches to address the control problems. In 1965, Kushner (see [12]) firstly studied the maximum principle for the stochastic optimal control problem, where the diffusion term does not contain state and control. Since then, extensive literature has emerged to study the stochastic optimal control problems. However, either the control domain must be convex, or the diffusion term does not contain the control. In 1990, Peng (see [24]) completely solved the stochastic optimal control problem and obtained the general maximum principle, by means of backward stochastic differential equations (BSDEs) as adjoint equations. On the other hand, in the real world, the memory affect always exists. The increment of the control system not only depends on the current state, but also depends on the past state. Also when the controller decides to exert control, it takes some time to exercise the action. Therefore, it has profound theory importance and extensive application value to study the control problems for systems with both state delay and control delay. Usually stochastic differential delay equations (SDDEs) are used to describe these delayed control systems. More details about SDDEs can be referred to $[13,16,19,20]$.

Given a time duration $[0, T]$, for a non-empty set $U \subset \mathbb{R}^{m}$, not necessarily convex, a constant time delay parameter $\delta \in(0, T)$ and a constant $\lambda \in \mathbb{R}$, in this paper we

[^0]consider the system of the following form:
\[

\left\{$$
\begin{align*}
d x(t)= & b\left(t, x(t), x(t-\delta), \int_{-\delta}^{0} e^{\lambda \theta} x(t+\theta) d \theta, u(t), u(t-\delta)\right) d t \tag{1.1}\\
& +\sigma\left(t, x(t), x(t-\delta), \int_{-\delta}^{0} e^{\lambda \theta} x(t+\theta) d \theta, u(t), u(t-\delta)\right) d W(t), t \in[0, T] \\
x(t)= & \xi(t), u(t)=\gamma(t), t \in[-\delta, 0]
\end{align*}
$$\right.
\]

where $x(\cdot) \in \mathbb{R}^{n}$ is state and $u(\cdot) \in U$ is control. Suppose that $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ is a complete filtered probability space and the filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ is generated by a d dimensional standard Brownian motion $\{W(t)\}_{t \geq 0} . b, \sigma$ are given random coefficients with proper dimensions. Deterministic continuous function $\xi(\cdot)$ and square integrable function $\gamma(\cdot)$ are the initial trajectories of the state and the control, respectively. We associate (1.1) with the following cost functional

$$
\begin{align*}
J(u(\cdot))= & \mathbb{E}\left[\int_{0}^{T} l\left(t, x(t), x(t-\delta), \int_{-\delta}^{0} e^{\lambda \theta} x(t+\theta) d \theta, u(t), u(t-\delta)\right) d t\right. \\
& \left.+h\left(x(T), x(T-\delta), \int_{-\delta}^{0} e^{\lambda \theta} X(T+\theta) d \theta\right)\right] \tag{1.2}
\end{align*}
$$

where l, h are given random coefficients with proper dimensions. Define the admissible control set as follows:

$$
\mathcal{U}_{a d}:=\left\{u(\cdot):[-\delta, T] \rightarrow \mathbb{R}^{m} \mid u(\cdot) \text { is a } U \text {-valued, square-integrable, } \mathbb{F}\right. \text {-adapted }
$$

$$
\text { process and } u(t)=\gamma(t), t \in[-\delta, 0]\}
$$

We state the optimal control problem as follows:
Problem (\mathbf{P}). Our object is to find a control $u^{*}(\cdot)$ over $\mathcal{U}_{a d}$ such that (1.1) is satisfied and (1.2) is minimized, i.e.,

$$
J\left(u^{*}(\cdot)\right)=\inf _{u(\cdot) \in \mathcal{U}_{a d}} J(u(\cdot))
$$

Any $u^{*}(\cdot) \in \mathcal{U}_{a d}$ that achieves the above infimum is called an optimal control and the corresponding solution $x^{*}(\cdot)$ is called the optimal trajectory. $\left(x^{*}(\cdot), u^{*}(\cdot)\right)$ is called an optimal pair. Optimal control problems of stochastic differential delay systems are widely used in economics, engineering and medicine (see [2,17,26,33]), and thus have attracted more and more scholars' attention. Take an optimal consumption problem as an example, at time t let $x(t), u(t)$ be the wealth, the consumption amount, respectively. It is reasonable to suppose that the wealth increment is a combination of the present value $x(t)$ plus some sliding average of previous value $\int_{-\delta}^{0} e^{\lambda \theta} x(t+\theta) d \theta$ and negative consumption amount $u(t)$. Therefore, the wealth equation satisfied by $x(\cdot)$ has the form of (1.1). The consumer always wants to find an optimal consumption strategy $u^{*}(\cdot)$ to maximize his terminal wealth $\mathbb{E}[X(T)]$ and consumption satisfaction $\mathbb{E} \int_{0}^{T} \frac{u^{\gamma}(t)}{\gamma} d t$, where $\gamma \in(0,1), 1-\gamma$ is the relative risk aversion of the consumer. Thus, the cost functional (1.2) can be chosen as $\mathbb{E}\left[-X(T)-\int_{0}^{T} \frac{u^{\gamma}(t)}{\gamma} d t\right]$. With different levels of consumption packages for consumers to select, the value set U of the consumption amount $u(t)$ should be limited and not necessarily convex. This typical consumption problem is a case of Problem (P), which motivates us to study the maximum principle for Problem (P).

So far, there have been extensive literature to study optimal control problems of stochastic differential delay systems. Øksendal and Sulem in [22] studied the sufficient maximum principle for the stochastic optimal control problem with convex control domain, and required the solution of certain adjoint equation to be zero due to the
lack of Itô formula to deal with pointwise state delay terms. Chen and Wu in [1] introduced a class of anticipated BSDEs as the adjoint equations and obtained the maximum principle. Although [1] removed the "zero-solution" condition in [22], the control domain is still convex. Recently, Meng and Shi in [18] addressed the stochastic optimal control problem, allowed the control domain to be non-convex, and gave the general maximum principle. However, the solution of some second-order adjoint equation must be zero, since at that moment there is no proper method to eliminate the cross terms of states and their delay terms. More related literature can be referred to $[3,7,10,21,32,36-39]$.

In this paper, we consider the stochastic optimal control problem associated with (1.1), (1.2), and derive the general maximum principle with arbitrary non-empty control domain U. Different from all the aforementioned literature, we study the optimal control problem from a new viewpoint of forward stochastic Volterra integral systems and develop some effective techniques. More precisely, inspired by [8], we first properly transform the delayed first-order variational equation into a linear forward stochastic Volterra integral equation (SVIE) without delay. Then, we combine it with the original first-order variational equation, lift them up, and end up with a higher dimensional linear forward SVIE. Eventually, we adapt the arguments developed by Wang and Yong (see [30]) for optimal control problems of forward stochastic Volterra integral systems into our framework and derive the main results accordingly.

Forward Volterra integral systems were introduced by Italian mathematician Volterra (see [28]). So far there have been extensive literature about the optimal control problems of forward Volterra integral systems. However, there are very little work to study the optimal control of forward stochastic Volterra integral systems. One possible reason is that until 2002 the theory of Type-I backward SVIEs was established by Lin (see [15]). Then, in 2006 Yong (see [34]) proposed Type-II backward SVIEs and firstly derived the maximum principle for optimal control problems of forward stochastic Volterra integral systems with convex control domain. Until recently, Wang and Yong in [30] introduced an auxiliary process and obtained the general maximum principle, where the control domain is allowed to be non-convex. More references can be referred to [29, 31].

As far as we know, a number of papers transform the delayed control problem into a control problem of Volterra integral systems. For example, in [9], they used proper variation of constants formula to transform equivalently the delayed quadratic optimal control problem into that of a linear Volterra integral system. Similar ideas also happened in [14] in infinite dimensional setting. On the other hand, there are also other methods to transform the delayed system to another system (see [4-6, 11, 27]). Among them, the delayed finite dimensional problem was lifted up to an infinite dimensional problem without delay. A limitation of such method lies in the high regularity assumption (such as continuity and differentiability) for the coefficients when going back to the original problem. Notice that our transformation in the current paper are essentially different from the above. In addition, by our arguments on (1.1), there is no need to introduce infinite dimensional analysis.

The innovations and contributions of this paper are as follows:
(i) The control system is very general. The control domain is not required to be convex, pointwise and distributed state delay appear not only in the state equation and the running cost, but also in the terminal cost, and pointwise control delay appears in the diffusion term and the running cost. Thus, our model can cover most control systems in the existing literature, such as $[1,18,22,39]$. The cross terms
" $x_{1}(t)^{\top}[\cdots] y_{1}(t)$ " and " $y_{1}(t)^{\top}[\cdots] x_{1}(t)$ " appear in the variational inequality, and make it difficult to seek adjoint equations for variational equations of point state delay.
(ii) A general maximum principle is obtained. It is simple and concise, consisting of two parts: one describes the maximum condition with delay, and the other describes the maximum condition without delay. In contrast with [18], the strict "zero-solution" condition imposed on the adjoint equation is successfully removed.
(iii) A new method is proposed to treat cross terms. How to deal with the cross terms in the variational inequality, is a key yet difficult problem in obtaining the general maximum principle. Inspired by [30], we solve this hard issue by the theory of forward, backward stochastic Volterra integral systems.
(iv) Novel adjoint equations are introduced. The first-order adjoint equations consist of a simple BSDE and a backward SVIE, while the second-order adjoint equations consist of a simple BSDE and three coupled backward SVIEs. They are used to be dual with the variational equations, and eliminate the variational processes in the variational inequality, even if the control domain is non-convex and pointwise state delay appears in both the state equation and the terminal cost.
(\mathbf{v}) The adjoint equations are expressed in more compact forms. The first-order adjoint equation is written as a set of anticipated BSDEs. The second-order adjoint equation reduces to the classical scenario when our delay system reduces to a stochastic differential system.

The rest of this paper is organized as follows. In Section 2, some basic results are displayed. In Section 3, the delayed variational equations are transformed into Volterra integral equations without delay, and then the adjoint equations are introduced in Section 4. In Section 5, the maximum principle is stated and some careful analysis on the adjoint equations are spread out. Finally, Section 6 gives the concluding remarks.
2. Preliminaries. For any $A, B \in \mathbb{R}^{m \times d}$, we define by $\langle A, B\rangle=\operatorname{Tr}\left[A B^{\top}\right]$ the inner product in $\mathbb{R}^{m \times d}$ with norm $|\cdot|$, and \mathbb{S}^{n} the set of all $n \times n$ symmetric matrices. Let $\mathbb{E}_{t}[\cdot] \equiv \mathbb{E}\left[\cdot \mid \mathcal{F}_{t}\right]$ be the conditional expectation with respect to $\mathcal{F}_{t}, t \in[0, T]$, and I is the identity matrix of proper dimensions. For $t \in[0, T]$, denote by $L_{\mathcal{F}_{t}}^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ the Hilbert space consisting of \mathbb{R}^{n}-valued \mathcal{F}_{t}-measurable random variable ξ such that $\mathbb{E}|\xi|^{2}<\infty$, by $L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{R}^{n}\right)$ the Hilbert space consisting of \mathbb{F}-adapted process $\phi(\cdot)$ such that $\mathbb{E} \int_{0}^{T}|\phi(t)|^{2} d t<\infty$, by $L_{\mathbb{F}}^{2}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$ the Banach space consisting of \mathbb{R}^{n}-valued \mathbb{F}-adapted continuous process $\phi(\cdot)$ such that $\mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}|\phi(t)|^{2}\right]<\infty$, and by $L^{2}\left(0, T ; L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{R}^{n}\right)\right)$ the space consisting of \mathbb{R}^{n}-valued process $\phi(\cdot, \cdot):[0, T]^{2} \times \Omega \rightarrow$ \mathbb{R}^{n} such that for almost all $t \in[0, T], \phi(t, \cdot) \in L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{R}^{n}\right), \mathbb{E} \int_{0}^{T} \int_{0}^{T}|\phi(t, s)|^{2} d s d t<\infty$.

Consider the following SDDE:

$$
\left\{\begin{align*}
d \tilde{x}(t)= & \tilde{b}\left(t, \tilde{x}(t), \tilde{x}(t-\delta), \int_{-\delta}^{0} e^{\lambda \theta} \tilde{x}(t+\theta) d \theta\right) d t \tag{2.1}\\
& +\tilde{\sigma}\left(t, \tilde{x}(t), \tilde{x}(t-\delta), \int_{-\delta}^{0} e^{\lambda \theta} \tilde{x}(t+\theta) d \theta\right) d W(t), \quad t \in[0, T] \\
\tilde{x}(t)= & \tilde{\xi}(t), t \in[-\delta, 0]
\end{align*}\right.
$$

where $\delta>0$ is the constant delay time, $\lambda \in \mathbb{R}$ is a constant, deterministic continuous function $\tilde{\xi}(\cdot)$ is the given initial path of the state, and random coefficients $\tilde{b}, \tilde{\sigma}$ are given mappings satisfying:
(H1) There exists a constant $L>0$ such that

$$
\begin{aligned}
& \left|\tilde{b}(t, x, y, z)-\tilde{b}\left(t, x^{\prime}, y^{\prime}, z^{\prime}\right)\right|+\left|\tilde{\sigma}(t, x, y, z)-\tilde{\sigma}\left(t, x^{\prime}, y^{\prime}, z^{\prime}\right)\right| \\
& \quad \leqslant L\left(\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right), \quad \forall t \in[0, T], x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\text { (H2) } \sup _{0 \leqslant t \leqslant T}(|\tilde{b}(t, 0,0,0)|+|\tilde{\sigma}(t, 0,0,0)|)<\infty
$$

By standard Picard iteration method we derive the following result, and readers can refer to [19].

Proposition 2.1. Suppose (H1)-(H2) hold. Then, the SDDE (2.1) admits a unique solution, and there exists a constant $C>0$ such that for $p \geqslant 2$,

$$
\mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}|\tilde{x}(t)|^{p}\right] \leqslant C\left[\sup _{\delta \leqslant \theta \leqslant 0}|\tilde{\xi}(\theta)|^{p}+\mathbb{E}\left(\int_{0}^{T}|\tilde{b}(s, 0,0,0)| d s\right)^{p}+\mathbb{E}\left(\int_{0}^{T}|\tilde{\sigma}(s, 0,0,0)|^{2} d s\right)^{\frac{p}{2}}\right]
$$

Let \mathbb{R}^{+}be the space of real numbers not less than zero. Consider the following anticipated BSDE:

$$
\left\{\begin{array}{l}
-d Y(t)=g\left(t, Y(t), Z(t), Y\left(t+\delta^{1}(t)\right), Z\left(t+\delta^{2}(t)\right)\right) d t-Z(t) d W(t), t \in[0, T] \tag{2.2}\\
Y(t)=\alpha(t), Z(t)=\beta(t), \quad t \in[T, T+K]
\end{array}\right.
$$

Here, terminal conditions $\alpha(\cdot) \in L_{\mathbb{F}}^{2}\left(\Omega ; C\left([T, T+K] ; \mathbb{R}^{m}\right)\right)$ and $\beta(\cdot) \in L_{\mathbb{F}}^{2}(T, T+$ $K ; \mathbb{R}^{m \times d}$) are given, $\delta^{1}(\cdot)$ and $\delta^{2}(\cdot)$ are given \mathbb{R}^{+}-valued functions defined on $[0, T]$ satisfying:
(H3) (i) There exists a constant $K \geqslant 0$ such that for all $s \in[0, T], s+\delta^{1}(s) \leqslant$ $T+K, s+\delta^{2}(s) \leqslant T+K ;$
(ii) There exists a constant $M \geqslant 0$ such that for all $t \in[0, T]$ and all nonnegative and integrable function $f(\cdot)$,

$$
\int_{t}^{T} f\left(s+\delta^{1}(s)\right) d s \leqslant M \int_{t}^{T+K} f(s) d s, \quad \int_{t}^{T} f\left(s+\delta^{2}(s)\right) d s \leqslant M \int_{t}^{T+K} f(s) d s
$$

We impose the following conditions to the generator of the equation (2.2):
(H4) $g(s, \omega, y, z, \alpha, \beta): \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \times L_{\mathcal{F}_{r}}^{2}\left(\Omega ; \mathbb{R}^{m}\right) \times L_{\mathcal{F}_{r^{\prime}}}^{2}\left(\Omega ; \mathbb{R}^{m \times d}\right) \rightarrow$ $L_{\mathcal{F}_{s}}^{2}\left(\Omega ; \mathbb{R}^{m}\right)$ for all $s \in[0, T]$, where $r, r^{\prime} \in[s, T+K]$, and $\mathbb{E}\left[\int_{0}^{T}|g(s, 0,0,0,0)|^{2} d s\right]<+\infty$.
(H5) There exists a constant $C>0$ such that for all $s \in[0, T], y, \tilde{y} \in \mathbb{R}^{m}$, $z, \tilde{z} \in \mathbb{R}^{m \times d}, \alpha(\cdot), \tilde{\alpha}(\cdot) \in L_{\mathbb{F}}^{2}\left(s, T+K ; \mathbb{R}^{m}\right), \beta(\cdot), \tilde{\beta}(\cdot) \in L_{\mathbb{F}}^{2}\left(s, T+K ; \mathbb{R}^{m \times d}\right), r, r^{\prime} \in$ $[s, T+K]$, we have

$$
\begin{aligned}
& \left|g\left(s, y, z, \alpha(r), \beta\left(r^{\prime}\right)\right)-g\left(s, \tilde{y}, \tilde{z}, \tilde{\alpha}(r), \tilde{\beta}\left(r^{\prime}\right)\right)\right| \\
& \quad \leqslant C\left(|y-\tilde{y}|+|z-\tilde{z}|+\mathbb{E}_{s}\left[|\alpha(r)-\tilde{\alpha}(r)|+\left|\beta\left(r^{\prime}\right)-\tilde{\beta}\left(r^{\prime}\right)\right|\right]\right)
\end{aligned}
$$

Proposition 2.2. (see [25]) Let (H3)-(H5) hold. Then, for any given $\alpha(\cdot) \in L_{\mathbb{F}}^{2}(\Omega$; $\left.C\left([T, T+K] ; \mathbb{R}^{m}\right)\right)$ and $\beta(\cdot) \in L_{\mathbb{F}}^{2}\left(T, T+K ; \mathbb{R}^{m \times d}\right)$, the equation (2.2) admits a unique \mathcal{F}_{t}-adapted solution pair $(Y(\cdot), Z(\cdot)) \in L_{\mathbb{F}}^{2}\left(\Omega ; C\left([0, T+K] ; \mathbb{R}^{m}\right)\right) \times L_{\mathbb{F}}^{2}\left(0, T+K ; \mathbb{R}^{m \times d}\right)$.

Consider the following backward SVIE:

$$
\begin{equation*}
\tilde{Y}(t)=\psi(t)+\int_{t}^{T} \tilde{g}(t, s, \tilde{Y}(s), \tilde{Z}(t, s), \tilde{Z}(s, t)) d s-\int_{t}^{T} \tilde{Z}(t, s) d W(s), t \in[0, T], \tag{2.3}
\end{equation*}
$$

where \tilde{g} is the given function satisfying:
(H6) \tilde{g} is $\mathcal{B}\left([0, T]^{2} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \times \mathbb{R}^{m \times d}\right) \otimes \mathcal{F}_{T}$-measurable such that $s \mapsto \tilde{g}(t, s, y, z, \zeta)$ is progressively measurable for all $(t, y, z, \zeta) \in[0, T] \times \mathbb{R}^{m} \times \mathbb{R}^{m \times d} \times \mathbb{R}^{m \times d}$, and

$$
\mathbb{E} \int_{0}^{T}\left(\int_{t}^{T}|\tilde{g}(t, s, 0,0,0)| d s\right)^{2} d t<\infty
$$

Moreover,

$$
\begin{aligned}
\mid \tilde{g}(t, s, y, z, \zeta)- & \tilde{g}(t, s, \bar{y}, \bar{z}, \bar{\zeta}) \mid \leqslant L(t, s)(|y-\bar{y}|+|z-\bar{z}|+|\zeta-\bar{\zeta}|) \\
& \forall 0 \leqslant t \leqslant s \leqslant T, y, \bar{y} \in \mathbb{R}^{m}, z, \bar{z}, \zeta, \bar{\zeta} \in \mathbb{R}^{m \times d}, \text { a.s. }
\end{aligned}
$$

where L is a deterministic function such that for some $\varepsilon>0$,

$$
\sup _{t \in[0, T]} \int_{t}^{T} L(t, s)^{2+\varepsilon} d s<\infty
$$

Proposition 2.3. (see [34]) Let (H6) hold. Then, for any $\mathcal{B}([0, T]) \otimes \mathcal{F}_{T}$-measura -ble process $\psi(\cdot)$ satisfying $\mathbb{E} \int_{0}^{T}|\psi(t)|^{2} d t<\infty$, the backward SVIE (2.3) admits a unique adapted solution $(Y(\cdot), Z(\cdot, \cdot)) \in L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{R}^{m}\right) \times L^{2}\left(0, T ; L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{R}^{m \times d}\right)\right)$ satisfying

$$
\tilde{Y}(t)=\mathbb{E}_{s}[\tilde{Y}(t)]+\int_{s}^{t} \tilde{Z}(t, r) d W(r), \text { a.e. } t \in[s, T]
$$

Moreover, for any $s \in[0, T]$, the following estimate holds:

$$
\begin{aligned}
& \mathbb{E}\left[\int_{s}^{T}|\tilde{Y}(t)|^{2} d t+\int_{s}^{T} \int_{s}^{T}|\tilde{Z}(t, r)|^{2} d r d t\right] \\
& \quad \leqslant C \mathbb{E}\left[\int_{s}^{T}|\psi(t)|^{2} d t+\int_{s}^{T}\left(\int_{t}^{T}|\tilde{g}(t, r, 0,0,0)| d r\right)^{2} d t\right]
\end{aligned}
$$

3. A novel transformation from SDDE to SVIE. In this section, we present the variational equations to be studied, then make some interesting transformations to them. Similar transformation also appeared in [8].

Denote

$$
\begin{equation*}
y(t):=x(t-\delta), \quad z(t):=\int_{-\delta}^{0} e^{\lambda \theta} x(t+\theta) d \theta, \quad \mu(t):=u(t-\delta) \tag{3.1}
\end{equation*}
$$

Then, we can rewrite the state equation (1.1) in a more concise form as follows:

$$
\left\{\begin{align*}
& d x(t)=b(t, x(t), y(t), z(t), u(t), \mu(t)) d t \tag{3.2}\\
&+\sigma(t, x(t), y(t), z(t), u(t), \mu(t)) d W(t), \quad t \in[0, T] \\
& x(t)= \xi(t), u(t)=\gamma(t), t \in[-\delta, 0]
\end{align*}\right.
$$

And the cost (1.2) becomes

$$
\begin{equation*}
J(u(\cdot))=\mathbb{E}\left[\int_{0}^{T} l(t, x(t), y(t), z(t), u(t), \mu(t)) d t+h(x(T), y(T), z(T))\right] \tag{3.3}
\end{equation*}
$$

Throughout the paper, we impose the following assumptions.
(A1) (i) The map $(x, y, z) \mapsto b=b(t, x, y, z, u, \mu), \sigma=\sigma(t, x, y, z, u, \mu), l=$ $l(t, x, y, z, u, \mu), h=h(x, y, z)$ are twice continuously differentiable in (x, y, z). They and all their derivatives $f_{\kappa^{i}}, f_{\kappa^{i} \kappa^{\ell}}$ are continuous in $(x, y, z, u, \mu), i, \ell=1,2,3$. Here $f=b, \sigma, l, h$ and $\kappa^{1}:=x, \kappa^{2}:=y, \kappa^{3}:=z$.
(ii) Denote $f=b, \sigma$ and $g=l, h$. For $i, \ell=1,2,3, f_{\kappa^{i}}, f_{\kappa^{i} \kappa^{\ell}}, g_{\kappa^{i} \kappa^{\ell}}$ are bounded, where $\kappa^{1}=x, \kappa^{2}=y, \kappa^{3}=z$. There exists a constant C such that

$$
|f(t, 0,0,0, u, \mu)|+|g(t, 0,0,0, u, \mu)|+\left|g_{\kappa^{i}}(t, 0,0,0, u, \mu)\right| \leqslant C, \forall u, \mu \in U, t \geqslant 0
$$

(iii) The initial trajectory of the state $\xi(\cdot)$ is a deterministic continuous function, and the initial trajectory of the control $\gamma(\cdot)$ is a deterministic square integrable function.

Under (A1), the SDDE (3.2) admits a unique solution by Proposition 2.1 above or Theorem 2.1 ([19], Chapter II), hence the cost functional (3.3) is well-defined and Problem (P) is meaningful.

Since the control domain U is an arbitrary non-empty set, not necessarily convex, we then apply the spike variation technique to deal with Problem (P). Let $u^{*}(\cdot)$ be the optimal control and $x^{*}(\cdot)$ be the optimal trajectory. Let $0<\varepsilon<\delta$, for any given $\tau \in[0, T)$, define $u_{\tau}^{\varepsilon}(t)$ for $t \in[0, T]$ as follows:

$$
u_{\tau}^{\varepsilon}(t):= \begin{cases}u^{*}(t), & t \notin[\tau, \tau+\varepsilon] \tag{3.4}\\ v(t), & t \in[\tau, \tau+\varepsilon]\end{cases}
$$

which is a perturbed admissible control of the form, where $v(\cdot)$ is any admissible control, and $\left(x^{\varepsilon}(\cdot), y^{\varepsilon}(\cdot), z^{\varepsilon}(\cdot)\right)$ is defined similar to (3.1).

Inspired by [24], we introduce the variational equations:

$$
\left\{\begin{align*}
d x_{1}(t)= & {\left[b_{x}(t) x_{1}(t)+b_{y}(t) y_{1}(t)+b_{z}(t) z_{1}(t)+\Delta b(t)\right] d t } \tag{3.5}\\
& +\sum_{j=1}^{d}\left[\sigma_{x}^{j}(t) x_{1}(t)+\sigma_{y}^{j}(t) y_{1}(t)+\sigma_{z}^{j}(t) z_{1}(t)+\Delta \sigma^{j}(t)\right] d W^{j}(t), t \in[0, T], \\
x_{1}(t)= & 0, \quad t \in[-\delta, 0]
\end{align*}\right.
$$

$$
\left\{\begin{aligned}
d x_{2}(t)= & {\left[b_{x}(t) x_{2}(t)+b_{y}(t) y_{2}(t)+b_{z}(t) z_{2}(t)\right.} \\
& \left.+\frac{1}{2}\left(x_{1}(t)^{\top}, y_{1}(t)^{\top}, z_{1}(t)^{\top}\right) \partial^{2} b(t)\left(x_{1}(t)^{\top}, y_{1}(t)^{\top}, z_{1}(t)^{\top}\right)^{\top}\right] d t \\
& +\sum_{j=1}^{d}\left[\sigma_{x}^{j}(t) x_{2}(t)+\sigma_{y}^{j}(t) y_{2}(t)+\sigma_{z}^{j}(t) z_{2}(t)\right. \\
& +\frac{1}{2}\left(x_{1}(t)^{\top}, y_{1}(t)^{\top}, z_{1}(t)^{\top}\right) \partial^{2} \sigma^{j}(t)\left(x_{1}(t)^{\top}, y_{1}(t)^{\top}, z_{1}(t)^{\top}\right)^{\top} \\
& \left.+\Delta \sigma_{x}^{j}(t) x_{1}(t)+\Delta \sigma_{y}^{j}(t) y_{1}(t)+\Delta \sigma_{z}^{j}(t) z_{1}(t)\right] d W^{j}(t), \quad t \in[0, T] \\
x_{2}(t)= & 0, \quad t \in[-\delta, 0]
\end{aligned}\right.
$$

where for $t \in[0, T], u^{\varepsilon}(t):=u_{\tau}^{\varepsilon}(t), \mu^{\varepsilon}(t):=u^{\varepsilon}(t-\delta), \Theta(t):=\left(x^{*}(t), y^{*}(t), z^{*}(t)\right.$, $\left.u^{*}(t), \mu^{*}(t)\right), \kappa^{1}:=x, \kappa^{2}:=y, \kappa^{3}:=z$, and for $i, \ell=1,2,3, f=b, \sigma^{j}$,

$$
\left\{\begin{array}{l}
f_{\kappa^{i}}(t):=f_{\kappa^{i}}(t, \Theta(t)), \quad f_{\kappa^{i} \kappa^{\ell}}(t):=f_{\kappa^{i} \kappa^{\ell}}(t, \Theta(t)) \tag{3.7}\\
\Delta f(t):=f\left(t, x^{*}(t), y^{*}(t), z^{*}(t), u^{\varepsilon}(t), \mu^{\varepsilon}(t)\right)-f(t, \Theta(t)) \\
\Delta f_{\kappa^{i}}(t):=f_{\kappa^{i}}\left(t, x^{*}(t), y^{*}(t), z^{*}(t), u^{\varepsilon}(t), \mu^{\varepsilon}(t)\right)-f_{\kappa^{i}}(t, \Theta(t))
\end{array}\right.
$$

for $f=b, \sigma^{j}, j=1,2, \cdots, d, \kappa_{1}^{1}=x_{1}, \kappa_{1}^{2}=y_{1}, \kappa_{1}^{3}=z_{1}$,

$$
\partial^{2} f(t):=\left(\begin{array}{ccc}
f_{x x}(t) & f_{x y}(t) & f_{x z}(t) \\
f_{y x}(t) & f_{y y}(t) & f_{y z}(t) \\
f_{z x}(t) & f_{z y}(t) & f_{z z}(t)
\end{array}\right), \kappa_{1}^{i}(t)^{\top} f_{\kappa^{i} \kappa^{\ell}}(t) \kappa_{1}^{\ell}(t):=\left(\begin{array}{c}
\kappa_{1}^{i}(t)^{\top} f_{\kappa^{i} \kappa^{\ell}}^{1}(t) \kappa_{1}^{\ell}(t) \\
\vdots \\
\kappa_{1}^{i}(t)^{\top} f_{\kappa^{i} \kappa^{\ell}}^{n}(t) \kappa_{1}^{\ell}(t)
\end{array}\right)
$$

and $y_{1}(\cdot), z_{1}(\cdot), y_{2}(\cdot), z_{2}(\cdot)$ are defined similar to (3.1). By Proposition 2.1, under Assumption (A1) the variational equations (3.5) and (3.6) admit a unique solution, respectively. In the following, we introduce some estimates whose proofs are similar to Lemma 3.1 and Lemma 3.2 in [18].

Lemma 3.1. Let Assumption (A1) hold. Then, for any $p \geqslant 1$, we have

$$
\begin{gather*}
\mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}\left|x^{\varepsilon}(t)-x^{*}(t)\right|^{2 p}\right]=O\left(\varepsilon^{p}\right), \quad \mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}\left|x_{1}(t)\right|^{2 p}\right]=O\left(\varepsilon^{p}\right), \tag{3.8}\\
\mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}\left|x_{2}(t)\right|^{p}\right]=O\left(\varepsilon^{p}\right), \quad \mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}\left|x^{\varepsilon}(t)-x^{*}(t)-x_{1}(t)\right|^{2 p}\right]=o\left(\varepsilon^{p}\right), \tag{3.9}\\
\mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}\left|x^{\varepsilon}(t)-x^{*}(t)-x_{1}(t)-x_{2}(t)\right|^{p}\right]=o\left(\varepsilon^{p}\right) . \tag{3.10}
\end{gather*}
$$

Proof. We only prove the estimate (3.10), and the other estimates are similar. For simplicity, consider $n=m=d=1$. Denote

$$
\begin{array}{lcc}
\tilde{\mathcal{X}}(t):=x^{\varepsilon}(t)-x^{*}(t)-x_{1}(t), & \mathcal{X}(t):=\tilde{\mathcal{X}}(t)-x_{2}(t), & \tilde{\mathcal{Y}}(t):=y^{\varepsilon}(t)-y^{*}(t)-y_{1}(t), \\
\mathcal{Y}(t):=\tilde{\mathcal{Y}}(t)-y_{2}(t), & \tilde{\mathcal{Z}}(t):=z^{\varepsilon}(t)-z^{*}(t)-z_{1}(t), & \mathcal{Z}(t):=\tilde{\mathcal{Z}}(t)-z_{2}(t) .
\end{array}
$$

Then, $\mathcal{X}(\cdot)$ satisfies the following SDDE:

$$
\left\{\begin{array}{l}
d \mathcal{X}(t)=\left\{b_{x}(t) \mathcal{X}(t)+b_{y}(t) \mathcal{Y}(t)+b_{z}(t) \mathcal{Z}(t)+\Delta b_{x}(t)\left(x^{\varepsilon}(t)-x^{*}(t)\right)\right. \\
+\Delta b_{y}(t)\left(y^{\varepsilon}(t)-y^{*}(t)\right)+\Delta b_{z}(t)\left(z^{\varepsilon}(t)-z^{*}(t)\right)+\tilde{b}_{x x}(t)\left[\left|x^{\varepsilon}(t)-x^{*}(t)\right|^{2}-\left|x_{1}(t)\right|^{2}\right] \\
+\left.\left[\tilde{b}_{x x}(t)-\frac{1}{2} b_{x x}(t)\right] x_{1}(t)\right|^{2}+\tilde{b}_{y y}(t)\left[\left|y^{\varepsilon}(t)-y^{*}(t)\right|^{2}-\left|y_{1}(t)\right|^{2}\right] \\
+\left[\tilde{b}_{y y}(t)-\frac{1}{2} b_{y y}(t)\right]\left|y_{1}(t)\right|^{2}+\tilde{b}_{z z}(t)\left[\left[z^{\varepsilon}(t)-\left.z^{*}(t)\right|^{2}-\left|z_{1}(t)\right|^{2}\right]\right. \\
+\left[\tilde{b}_{z z}(t)-\frac{1}{2} b_{z z}(t)\right]\left|z_{1}(t)\right|^{2}+2 \tilde{b}_{x y}(t)\left[\left(x^{\varepsilon}(t)-x^{*}(t)\right)\left(y^{\varepsilon}(t)-y^{*}(t)\right)-x_{1}(t) y_{1}(t)\right] \\
+2 \tilde{b}_{x z}(t)\left[\left(x^{\varepsilon}(t)-x^{*}(t)\right)\left(z^{\varepsilon}(t)-z^{*}(t)\right)-x_{1}(t) z_{1}(t)\right]+2 \tilde{b}_{y_{z}}(t)\left[\left(y^{\varepsilon}(t)-y^{*}(t)\right)\right. \\
\left.\times\left(z^{\varepsilon}(t)-z^{*}(t)\right)-y_{1}(t) z_{1}(t)\right]+\left[2 \tilde{b}_{x y}(t)-b_{x y}(t)\right] x_{1}(t) y_{1}(t) \\
\left.+\left[2 \tilde{b}_{x z}(t)-b_{x z}(t)\right] x_{1}(t) z_{1}(t)+\left[2 \tilde{b}_{y z}(t)-b_{y z}(t)\right] y_{1}(t) z_{1}(t)\right\} d t \\
+\left\{\sigma_{x}(t) \mathcal{X}(t)+\sigma_{y}(t) \mathcal{Y}(t)+\sigma_{z}(t) \mathcal{Z}(t)+\Delta \sigma_{x}(t) \tilde{\mathcal{X}}(t)+\Delta \sigma_{y}(t) \tilde{\mathcal{Y}}(t)+\Delta \sigma_{z}(t) \tilde{\mathcal{Z}}(t)\right. \\
+\tilde{\sigma}_{x x}(t)\left[\left|x^{\varepsilon}(t)-x^{*}(t)\right|^{2}-\left|x_{1}(t)\right|^{2}\right]+\left[\tilde{\sigma}_{x x}(t)-\frac{1}{2} \sigma_{x x}(t)\right]\left|x_{1}(t)\right|^{2}+\tilde{\sigma}_{y y}(t)\left[\mid y^{\varepsilon}(t)\right. \\
\left.-\left.y^{*}(t)\right|^{2}-\left|y_{1}(t)\right|^{2}\right]+\left[\tilde{\sigma}_{y y}(t)-\frac{1}{2} \sigma_{y y}(t)\right]\left|y_{1}(t)\right|^{2}+\tilde{\sigma}_{z z}(t)\left[\left|z^{\varepsilon}(t)-z^{*}(t)\right|^{2}-\left|z_{1}(t)\right|^{2}\right] \\
+\left[\tilde{\sigma}_{z z}(t)-\frac{1}{2} \sigma_{z z}(t)\right]\left|z_{1}(t)\right|^{2}+2 \tilde{\sigma}_{x y}(t)\left[\left(x^{\varepsilon}(t)-x^{*}(t)\right)\left(y^{\varepsilon}(t)-y^{*}(t)\right)-x_{1}(t) y_{1}(t)\right] \\
+2 \tilde{\sigma}_{x z}(t)\left[\left(x^{\varepsilon}(t)-x^{*}(t)\right)\left(z^{\varepsilon}(t)-z^{*}(t)\right)-x_{1}(t) z_{1}(t)\right]+2 \tilde{\sigma}_{y z}(t)\left[\left(y^{\varepsilon}(t)-y^{*}(t)\right)\right. \\
\left.\times\left(z^{\varepsilon}(t)-z^{*}(t)\right)-y_{1}(t) z_{1}(t)\right]+\left[2 \tilde{\sigma}_{x y}(t)-\sigma_{x y}(t)\right] x_{1}(t) y_{1}(t) \\
\left.+\left[2 \tilde{\sigma}_{x z}(t)-\sigma_{x z}(t)\right] x_{1}(t) z_{1}(t)+\left[2 \tilde{\sigma}_{y z}(t)-\sigma_{y z}(t)\right] y_{1}(t) z_{1}(t)\right\} d W(t), t \geq 0, \\
\mathcal{X}(t=0, t \in[-\delta, 0,
\end{array}\right.
$$

where

$$
\begin{gathered}
\tilde{b}_{\kappa^{i} \kappa^{j}}(t)=\int_{0}^{1} \int_{0}^{1} \lambda b_{\kappa^{i} \kappa^{j}}\left(t, x^{*}(t)+\lambda \theta\left(x^{\varepsilon}(t)-x^{*}(t)\right), y^{*}(t)+\lambda \theta\left(y^{\varepsilon}(t)-y^{*}(t)\right),\right. \\
\left.z^{*}(t)+\lambda \theta\left(z^{\varepsilon}(t)-z^{*}(t)\right), u^{\varepsilon}(t), \mu^{\varepsilon}(t)\right) d \theta d \lambda, i, j=1,2,3,
\end{gathered}
$$

with $\kappa^{1}=x, \kappa^{2}=y, \kappa^{3}=z$. By the estimate of the solution to (3.11), we obtain

$$
\begin{aligned}
& \underset{0 \leqslant t \leqslant T}{\mathbb{E}} \sup _{0}|\mathcal{X}(t)|^{p} \leqslant M \mathbb{E}\left(\int _ { 0 } ^ { T } \left[\left|x^{\varepsilon}(t)-x^{*}(t)+x_{1}(t)\right|^{2}|\tilde{\mathcal{X}}(t)|^{2}+\left|y^{\varepsilon}(t)-y^{*}(t)+y_{1}(t)\right|^{2}\right.\right. \\
& \quad \times|\tilde{\mathcal{Y}}(t)|^{2}+\left.\left|z^{\varepsilon}(t)-z^{*}(t)+z_{1}(t)\right|^{2} \tilde{\mathcal{Z}}(t)\right|^{2}+|\tilde{\mathcal{X}}(t)|^{2}| |^{\varepsilon}(t)-\left.y^{*}(t)\right|^{2}+\left|x_{1}(t) \tilde{\mathcal{Y}}(t)\right|^{2} \\
& \quad+|(t)|^{2}\left|z^{\varepsilon}(t)-z^{*}(t)\right|^{2}+\left|x_{1}(t) \tilde{\mathcal{Z}}(t)\right|^{2}+|\tilde{\mathcal{Y}}(t)|^{2}\left|z^{\varepsilon}(t)-z^{*}(t)\right|^{2}+\left|y_{1}(t)(t)\right|^{2} \\
& \quad+\left[\left|\tilde{b}_{x x}(t)-\frac{1}{2} b_{x x}(t)\right|^{2}+\left|\tilde{\sigma}_{x x}(t)-\frac{1}{2} \sigma_{x x x}(t)\right|^{2}\right]\left|x_{1}(t)\right|^{4}+\left[\left|\tilde{b}_{y y}(t)-\frac{1}{2} b_{y y}(t)\right|^{2}\right. \\
& \left.\quad+\left|\tilde{\sigma}_{y y}(t)-\frac{1}{2} \sigma_{y y}(t)\right|^{2}\right]\left|y_{1}(t)\right|^{4}+\left[\left|\tilde{b}_{z z}(t)-\frac{1}{2} b_{z z}(t)\right|^{2}+\left|\tilde{\sigma}_{z z}(t)-\frac{1}{2} \sigma_{z z z}(t)\right|^{2}\right] \\
& \quad \times\left|z_{1}(t)\right|^{4}+\left[\left|2 \tilde{b}_{x y}(t)-b_{x y}(t)\right|^{2}+\left|2 \tilde{\sigma}_{x y}(t)-\sigma_{x y}(t)\right|^{2}\right]\left|x_{1}(t) y_{1}(t)\right|^{2}+\left[\mid 2 \tilde{b}_{x z}(t)\right. \\
& \left.\quad-\left.b_{x z}(t)\right|^{2}+\left|2 \tilde{\sigma}_{x z}(t)-\sigma_{x z}(t)\right|^{2}\right]\left|x_{1}(t) z_{1}(t)\right|^{2}+\left[\left|2 \tilde{b}_{y z}(t)-b_{y z}(t)\right|^{2}+\mid 2 \tilde{\sigma}_{y z}(t)\right. \\
& \left.\left.\left.\quad-\left.\sigma_{y z}(t)\right|^{2}\right]\left|y_{1}(t) z_{1}(t)\right|^{2}\right] d t\right)^{\frac{p}{2}}+M \mathbb{E}\left(\int _ { 0 } ^ { T } \left[\left|\Delta b_{x x}(t)\left(x^{\varepsilon}(t)-x^{*}(t)\right)\right|+\mid \Delta b_{y}(t)\right.\right. \\
& \left.\quad \times\left(y^{\varepsilon}(t)-y^{*}(t)\right)\left|+\left|\Delta b_{z}(t)\left(z^{\varepsilon}(t)-z^{*}(t)\right)\right|\right] d t\right)^{p}+M \mathbb{E}\left(\int _ { 0 } ^ { T } \left[\left|\Delta \sigma_{x}(t) \tilde{\mathcal{X}}(t)\right|^{2}\right.\right. \\
& \left.\left.\quad+\left|\Delta \sigma_{y}(t) \tilde{\mathcal{Y}}(t)\right|^{2}+\left|\Delta \sigma_{z}(t) \tilde{\mathcal{Z}}(t)\right|^{2}\right] d t\right)^{\frac{p}{2}},
\end{aligned}
$$

where $\Delta l, l_{\kappa^{i}}, l_{\kappa^{i} \kappa^{\ell}}, h_{\kappa^{i}}, h_{\kappa^{i} \kappa^{\ell}}$ are defined similarly as (3.7) for $i, \ell=1,2,3$.
Define

$$
X_{1}(t):=\left[\begin{array}{c}
x_{1}(t) \\
y_{1}(t) \mathbf{1}_{(\delta, \infty)}(t) \\
z_{1}(t)
\end{array}\right], \quad X_{2}(t):=\left[\begin{array}{c}
x_{2}(t) \\
y_{2}(t) \mathbf{1}_{(\delta, \infty)}(t) \\
z_{2}(t)
\end{array}\right]
$$

281
where M is a constant. By Assumption (A1) and (3.8)-(3.9), we have

$$
\begin{aligned}
& \mathbb{E}\left(\int_{0}^{T}\left|x^{\varepsilon}(t)-x^{*}(t)+x_{1}(t)\right|^{2}|\tilde{\mathcal{X}}(t)|^{2} d t\right)^{\frac{p}{2}} \\
& \quad \leqslant \mathbb{E}\left\{\sup _{0 \leq t \leq T}|\tilde{\mathcal{X}}(t)|^{p}\left[\sup _{0 \leq t \leq T}\left|x^{\varepsilon}(t)-x(t)\right|^{p}+\sup _{0 \leq t \leq T}\left|x_{1}(t)\right|^{p}\right]\right\}=o\left(\varepsilon^{p}\right), \\
& \quad \mathbb{E}\left(\int_{0}^{T}\left|\tilde{b}_{x x}(t)-\frac{1}{2} b_{x x}(t)\right|^{2}\left|x_{1}(t)\right|^{4} d t\right)^{\frac{p}{2}} \\
& \quad \leq \mathbb{E}\left[\sup _{0 \leq t \leq T}\left|x_{1}(t)\right|^{2 p}\left(\int_{0}^{T}\left|\tilde{b}_{x x}(t)-\frac{1}{2} b_{x x}(t)\right|^{2} d t\right)^{\frac{p}{2}}\right]=o\left(\varepsilon^{p}\right) \\
& \mathbb{E}\left(\int_{0}^{T}\left|\Delta \sigma_{x}(t) \tilde{\mathcal{X}}(t)\right|^{2} d t\right)^{\frac{p}{2}} \leqslant \mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}|\tilde{\mathcal{X}}(t)|^{p}\left(\int_{0}^{T}\left|\Delta \sigma_{x}(t)\right|^{2} d t\right)^{\frac{p}{2}}\right]=o\left(\varepsilon^{p}\right) .
\end{aligned}
$$

(3.16) $\mathbb{E} \sup _{0 \leqslant t \leqslant T}\left|z_{1}(t)\right|^{p}=\mathbb{E} \sup _{0 \leqslant t \leqslant T}\left|\int_{t-\delta}^{t} e^{\lambda(r-t)} x_{1}(r) d r\right|^{p} \leqslant \frac{1}{\lambda} \mathbb{E} \sup _{-\delta \leqslant t \leqslant T}\left|x_{1}(t)\right|^{p}$, we deal with all terms in (3.12) similar to (3.13)-(3.15), and derive the estimate (3.10).

Lemma 3.2. Let Assumption (A1) hold. Suppose $\left(x^{*}(\cdot), u^{*}(\cdot)\right)$ is an optimal pair, $x^{\varepsilon}(\cdot)$ is the trajectory corresponding to $u^{\varepsilon}(\cdot)$ by (3.4). Then, the following variational inequality holds:

$$
\begin{aligned}
& J\left(u^{\varepsilon}(\cdot)\right)-J\left(u^{*}(\cdot)\right)=\mathbb{E}\left[h_{x}(T)\left[x_{1}(T)+x_{2}(T)\right]+h_{y}(T)\left[y_{1}(T)+y_{2}(T)\right]+h_{z}(T)\left[z_{1}(T)\right.\right. \\
& \left.\left.\quad+z_{2}(T)\right]+\frac{1}{2}\left(x_{1}(T)^{\top}, y_{1}(T)^{\top}, z_{1}(T)^{\top}\right) \partial^{2} h(T)\left(x_{1}(T)^{\top}, y_{1}(T)^{\top}, z_{1}(T)^{\top}\right)^{\top}\right] \\
& \quad+\mathbb{E} \int_{0}^{T}\left[\Delta l(t)+l_{x}(t)\left[x_{1}(t)+x_{2}(t)\right]+l_{y}(t)\left[y_{1}(t)+y_{2}(t)\right]+l_{z}(t)\left[z_{1}(t)+z_{2}(t)\right]\right. \\
& \left.\quad+\frac{1}{2}\left(x_{1}(t)^{\top}, y_{1}(t)^{\top}, z_{1}(t)^{\top}\right) \partial^{2} l(t)\left(x_{1}(t)^{\top}, y_{1}(t)^{\top}, z_{1}(t)^{\top}\right)^{\top}\right] d t+o(\varepsilon),
\end{aligned}
$$

and for $j=1, \cdots, d$,

$$
\begin{aligned}
& A(t, s):=\left[\begin{array}{ccc}
b_{x}(s) & b_{y}(s) & b_{z}(s) \\
\mathbf{1}_{(\delta, \infty)}(t-s) b_{x}(s) & \mathbf{1}_{(\delta, \infty)}(t-s) b_{y}(s) & \mathbf{1}_{(\delta, \infty)}(t-s) b_{z}(s) \\
I & -e^{-\lambda \delta} I & -\lambda I
\end{array}\right], \\
& C^{j}(t, s):=\left[\begin{array}{ccc}
\sigma_{x}^{j}(s) & \sigma_{y}^{j}(s) & \sigma_{z}^{j}(s) \\
\mathbf{1}_{(\delta, \infty)}(t-s) \sigma_{x}^{j}(s) & \mathbf{1}_{(\delta, \infty)}(t-s) \sigma_{y}^{j}(s) & \mathbf{1}_{(\delta, \infty)}(t-s) \sigma_{z}^{j}(s) \\
0 & 0 & 0
\end{array}\right], \\
& B(t, s):=\left[\begin{array}{c}
\Delta b(s) \\
\mathbf{1}_{(\delta, \infty)}(t-s) \Delta b(s) \\
0
\end{array}\right], \quad D^{j}(t, s):=\left[\begin{array}{c}
\Delta \sigma^{j}(s) \\
\mathbf{1}_{(\delta, \infty)}(t-s) \Delta \sigma^{j}(s) \\
0
\end{array}\right], \\
& \bar{B}(t, s):=\left[\begin{array}{c}
\frac{1}{2} X_{1}(s)^{\top} \partial^{2} b(s) X_{1}(s) \\
\frac{1}{2} \mathbf{1}_{(\delta, \infty)}(t-s) X_{1}(s)^{\top} \partial^{2} b(s) X_{1}(s) \\
0
\end{array}\right], \quad \Delta \Xi^{j}(s):=\left[\Delta \sigma_{x}^{j}(s), \Delta \sigma_{y}^{j}(s), \Delta \sigma_{z}^{j}(s)\right], \\
& \bar{D}^{j}(t, s):=\left[\begin{array}{c}
\frac{1}{2} X_{1}(s)^{\top} \partial^{2} \sigma^{j}(s) X_{1}(s)+\Delta \Xi^{j}(s) X_{1}(s) \\
\mathbf{1}_{(\delta, \infty)}(t-s)\left[\frac{1}{2} X_{1}(s)^{\top} \partial^{2} \sigma^{j}(s) X_{1}(s)+\Delta \Xi^{j}(s) X_{1}(s)\right] \\
0
\end{array}\right] .
\end{aligned}
$$

Then, by (3.5)-(3.6),

$$
\begin{align*}
& X_{1}(t)=\int_{0}^{t}\left[A(t, s) X_{1}(s)+B(t, s)\right] d s+\sum_{j=1}^{d} \int_{0}^{t}\left[C^{j}(t, s) X_{1}(s)+D^{j}(t, s)\right] d W^{j}(s), \tag{3.18}\\
& X_{2}(t)=\int_{0}^{t}\left[A(t, s) X_{2}(s)+\bar{B}(t, s)\right] d s+\sum_{j=1}^{d} \int_{0}^{t}\left[C^{j}(t, s) X_{2}(s)+\bar{D}^{j}(t, s)\right] d W^{j}(s) . \tag{3.19}
\end{align*}
$$

By Proposition 2.1 in [30] and Assumption (A1), (3.18) and (3.19) both admit unique solutions. Therefore, the above variational inequality (3.17) can be written as

$$
\begin{align*}
& J\left(u^{\varepsilon}(\cdot)\right)-J\left(u^{*}(\cdot)\right)=\mathbb{E} \int_{0}^{T}\left[\bar{L}(t)\left[X_{1}(t)+X_{2}(t)\right]+\frac{1}{2} X_{1}(t)^{\top} L(t) X_{1}(t)\right. \\
& +\Delta l(t)] d t+\mathbb{E}\left[\bar{H}\left[X_{1}(T)+X_{2}(T)\right]+\frac{1}{2} X_{1}(T)^{\top} H X_{1}(T)\right]+o(\varepsilon) \tag{3.20}
\end{align*}
$$

Here $X_{1}(\cdot)$ and $X_{2}(\cdot)$ satisfy linear SVIEs in (3.18) and (3.19), respectively, and

$$
\begin{aligned}
& \bar{H}=\left[\begin{array}{lll}
h_{x}(T) & h_{y}(T) & h_{z}(T)
\end{array}\right], \quad \bar{L}(t)=\left[\begin{array}{lll}
l_{x}(t) & l_{y}(t) & l_{z}(t)
\end{array}\right], \\
& H=\left[\begin{array}{lll}
h_{x x}(T) & h_{x y}(T) & h_{x z}(T) \\
h_{y x}(T) & h_{y y}(T) & h_{y z}(T) \\
h_{z x}(T) & h_{z y}(T) & h_{z z}(T)
\end{array}\right], \quad L(t)=\left[\begin{array}{lll}
l_{x x}(t) & l_{x y}(t) & l_{x z}(t) \\
l_{y x}(t) & l_{y y}(t) & l_{y z}(t) \\
l_{z x}(t) & l_{z y}(t) & l_{z z}(t)
\end{array}\right],
\end{aligned}
$$

where \bar{H} is $\mathbb{R}^{3 n}$-valued row vector and other terms are similar. Under above preparation, we can borrow some useful ideas from [30] where the maximum principle of optimal control problems described by SVIEs was completely solved.

Remark 3.3. In [8], the author directly lifted up the state $x(\cdot)$ along with its pointwise delay $x(\cdot-\delta)$, and the lifted process satisfies a general SVIE, while in this paper, we lift up the variational processes $x_{1}(\cdot), x_{2}(\cdot)$ along with their pointwise delay $x_{1}(\cdot-\delta), x_{2}(\cdot-\delta)$, then $X_{1}(\cdot)$ and $X_{2}(\cdot)$ satisfy linear SVIEs respectively, and are easier to deal with later.
4. Adjoint equations. In this section we introduce some adjoint equations to be dual with the variational equations (3.5)-(3.6).
4.1. First-order adjoint equations. We treat the terms about $X_{1}(\cdot)+X_{2}(\cdot)$ in (3.20). From [34], we introduce the first-order adjoint equation as follows:

$$
\begin{align*}
\text { (a) } \quad \eta(t)= & \bar{H}^{\top}-\sum_{j=1}^{d} \int_{t}^{T} \zeta^{j}(s) d W^{j}(s), \quad t \in[0, T] \\
\text { (b) } \quad Y(t)= & \bar{L}(t)^{\top}+A(T, t)^{\top} \bar{H}^{\top}+\sum_{j=1}^{d} C^{j}(T, t)^{\top} \zeta^{j}(t)+\int_{t}^{T}\left[A(s, t)^{\top} Y(s)\right. \tag{4.1}\\
& \left.+\sum_{j=1}^{d} C^{j}(s, t)^{\top} Z^{j}(s, t)\right] d s-\sum_{j=1}^{d} \int_{t}^{T} Z^{j}(t, s) d W^{j}(s), t \in[0, T] \\
\text { (c) } Y(t)= & \mathbb{E} Y(t)+\sum_{j=1}^{d} \int_{0}^{t} Z^{j}(t, s) d W^{j}(s), \quad t \in[0, T]
\end{align*}
$$

(4.1) (a) is a BSDE which admits a unique solution by Theorem 4.1 in [23]. On the other hand, (4.1) (b) is a linear backward SVIE, and by Proposition 2.3, it admits a unique solution that satisfies (4.1) (c) under Assumption (A1). Notice that

$$
X_{1}(t)+X_{2}(t)=\varphi(t)+\int_{0}^{t} A(t, s)\left[X_{1}(s)+X_{2}(s)\right] d s+\sum_{j=1}^{d} \int_{0}^{t} C^{j}(t, s)\left[X_{1}(s)+X_{2}(s)\right] d W^{j}(s)
$$

where

$$
\varphi(t):=\int_{0}^{t}[\bar{B}(t, s)+B(t, s)] d s+\sum_{j=1}^{d} \int_{0}^{t}\left[\bar{D}^{j}(t, s)+D^{j}(t, s)\right] d W^{j}(s)
$$

Then, by the dual principle ([34], Theorem 5.1), we have

$$
\mathbb{E} \int_{0}^{T} \bar{L}(t)\left[X_{1}(t)+X_{2}(t)\right] d t+\mathbb{E}\left[\bar{H}\left[X_{1}(T)+X_{2}(T)\right]\right]=\mathbb{E} \int_{0}^{T}\langle\varphi(t), Y(t)\rangle d t+\mathbb{E}[\bar{H} \varphi(T)] .
$$

Let for $j=1, \cdots, d$,

$$
\eta(t):=\left(\begin{array}{l}
\eta^{0}(t) \tag{4.2}\\
\eta^{1}(t) \\
\eta^{2}(t)
\end{array}\right), \zeta^{j}(t):=\left(\begin{array}{c}
\zeta^{0 j}(t) \\
\zeta^{1 j}(t) \\
\zeta^{2 j}(t)
\end{array}\right), Y(t):=\left(\begin{array}{c}
Y^{0}(t) \\
Y^{1}(t) \\
Y^{2}(t)
\end{array}\right), Z^{j}(t, s):=\left(\begin{array}{c}
Z^{0 j}(t, s) \\
Z^{1 j}(t, s) \\
Z^{2 j}(t, s)
\end{array}\right)
$$

Then, by (4.1) we deduce

$$
\begin{aligned}
\mathbb{E} & \int_{0}^{T}\langle\varphi(t), Y(t)\rangle d t+\mathbb{E}[\bar{H} \varphi(T)] \\
= & \mathbb{E} \int_{0}^{T} \int_{0}^{t}\langle Y(t), B(t, s)+\bar{B}(t, s)\rangle d s d t+\sum_{j=1}^{d} \mathbb{E} \int_{0}^{T} \int_{0}^{t}\left\langle Z^{j}(t, s), D^{j}(t, s)+\bar{D}^{j}(t, s)\right\rangle d s d t \\
& +\mathbb{E}\left[\bar{H} \int_{0}^{T}[\bar{B}(T, s)+B(T, s)] d s+\sum_{j=1}^{d} \int_{0}^{T} \zeta^{j}(s)^{\top}\left[\bar{D}^{j}(T, s)+D^{j}(T, s)\right] d s\right],
\end{aligned}
$$

which together with (3.20) yields that

$$
\begin{aligned}
& J\left(u^{\varepsilon}(\cdot)\right)-J\left(u^{*}(\cdot)\right)=\mathbb{E} \int_{0}^{T}\left[\Delta l(s)+\frac{1}{2} X_{1}(s)^{\top} L(s) X_{1}(s)+\left\langle\Delta b(s)+\frac{1}{2} X_{1}(s)^{\top} \partial^{2} b(s) X_{1}(s),\right.\right. \\
& \left.\quad \int_{s}^{T} Y^{0}(t) d t+\int_{s+\delta}^{T} Y^{1}(t) d t \mathbf{1}_{[0, T-\delta)}(s)+h_{x}(T)^{\top}+h_{y}(T)^{\top} \mathbf{1}_{[0, T-\delta)}(s)\right\rangle+\sum_{j=1}^{d}\left\langle\Delta \sigma^{j}(s)\right. \\
& \quad+\frac{1}{2} X_{1}(s)^{\top} \partial^{2} \sigma^{j}(s) X_{1}(s)+\Delta \Xi^{j}(s) X_{1}(s), \int_{s+\delta}^{T} Z^{1 j}(t, s) d t \mathbf{1}_{[0, T-\delta)}(s)+\int_{s}^{T} Z^{0 j}(t, s) d t \\
& \left.\left.\quad+\zeta^{0 j}(s)+\zeta^{1 j}(s) \mathbf{1}_{[0, T-\delta)}(s)\right\rangle\right] d s+\frac{1}{2} \mathbb{E} X_{1}(T)^{\top} H X_{1}(T)+o(\varepsilon) .
\end{aligned}
$$

Next we would like to write (4.3) in a more concise form, and give the main result of this subsection. To this end, for $j=1, \cdots, d, 0 \leqslant t \leqslant T$, let us denote

$$
\left\{\begin{array}{l}
p(t):=\eta^{0}(t)+\eta^{1}(t) \mathbf{1}_{[0, T-\delta)}(t)+\mathbb{E}_{t}\left[\int_{t}^{T} Y^{0}(s) d s+\int_{t+\delta}^{T} Y^{1}(s) d s \mathbf{1}_{[0, T-\delta)}(t)\right] \tag{4.4}\\
q^{j}(t):=\zeta^{0 j}(t)+\zeta^{1 j}(t) \mathbf{1}_{[0, T-\delta)}(t)+\int_{t}^{T} Z^{0 j}(s, t) d s+\int_{t+\delta}^{T} Z^{1 j}(s, t) d s \mathbf{1}_{[0, T-\delta)}(t)
\end{array}\right.
$$

and $G:[0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n \times d} \times \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ as follows (4.5) $G(t, x, y, z, p, q, u, \mu):=l(t, x, y, z, u, \mu)+\langle p, b(t, x, y, z, u, \mu)\rangle+\sum^{d}\left\langle q^{j}, \sigma^{j}(t, x, y, z, u, \mu)\right\rangle$.

Lemma 4.1. Let Assumption (A1) hold. Suppose $\left(x^{*}(\cdot), j \bar{u}^{4}(\cdot)\right)$ is an optimal pair, $x^{\varepsilon}(\cdot)$ is the trajectory corresponding to $u^{\varepsilon}(\cdot)$, given by (3.4), $(\eta(\cdot), \zeta(\cdot), Y(\cdot), Z(\cdot, \cdot))$ is a solution to (4.1). Then, the following variational inequality holds:

$$
\begin{equation*}
J\left(u^{\varepsilon}(\cdot)\right)-J\left(u^{*}(\cdot)\right)=\mathbb{E} \int_{\tau}^{\tau+\varepsilon} \Delta G(t) d t+\mathbb{E} \int_{\tau+\delta}^{\tau+\delta+\varepsilon} \Delta \tilde{G}(t) d t \mathbf{1}_{[0, T-\delta)}(\tau)+\frac{1}{2} \mathscr{E}(\varepsilon)+o(\varepsilon) \tag{4.6}
\end{equation*}
$$

for all $v(\cdot) \in \mathcal{U}_{a d}$ and $\tau \in[0, T)$, where

$$
\begin{align*}
\mathscr{E}(\varepsilon):= & \mathbb{E} \int_{0}^{T} X_{1}(t)^{\top} \partial^{2} G(t) X_{1}(t) d t+\mathbb{E}\left[X_{1}(T)^{\top} H X_{1}(T)\right] \tag{4.7}\\
\Delta G(t):= & G\left(t, x^{*}(t), y^{*}(t), z^{*}(t), p(t), q(t), v(t), u^{*}(t-\delta)\right) \\
& -G\left(t, x^{*}(t), y^{*}(t), z^{*}(t), p(t), q(t), u^{*}(t), u^{*}(t-\delta)\right), \\
\Delta \tilde{G}(t):= & G\left(t, x^{*}(t), y^{*}(t), z^{*}(t), p(t), q(t), u^{*}(t), v(t-\delta)\right) \\
& -G\left(t, x^{*}(t), y^{*}(t), z^{*}(t), p(t), q(t), u^{*}(t), u^{*}(t-\delta)\right) .
\end{align*}
$$

$$
\begin{aligned}
& \left|\mathbb{E} \int_{0}^{T}\left\langle\Delta \sigma_{z}^{j}(s) z_{1}(s), \int_{s+\delta}^{T} Z^{1 j}(t, s) d t \mathbf{1}_{[0, T-\delta)}(s)\right\rangle d s\right| \\
& \leqslant M\left(\mathbb{E} \int_{\tau}^{\tau+\varepsilon}\left|\int_{s+\delta}^{T} Z^{1 j}(t, s) d t\right|^{2} d s\right)^{\frac{1}{2}} \varepsilon^{\frac{1}{2}}\left(\mathbb{E} \sup _{\tau \leqslant s \leqslant \tau+\varepsilon}\left|z_{1}(s)\right|^{2}\right)^{\frac{1}{2}} \\
& \\
& \quad+M \varepsilon^{\frac{1}{2}}\left(\mathbb{E} \sup _{\tau+\delta \leqslant s \leqslant \tau+\delta+\varepsilon}\left|z_{1}(s)\right|^{2}\right)^{\frac{1}{2}}\left(\mathbb{E} \int_{\tau+\delta}^{\tau+\delta+\varepsilon}\left|\int_{s+\delta}^{T} Z^{1 j}(t, s) d t\right|^{2} d s\right)^{\frac{1}{2}}=o(\varepsilon),
\end{aligned}
$$

where M is a constant. Then, by applying Lemma 3.1, (4.3) and (4.4), we complete the proof.
4.2. Second-order adjoint equations. To treat the quadratic form in (4.6), let us borrow some ideas from [30]. Now we introduce the following systems of backward equations:

$$
\begin{align*}
& \text { (a) } \quad P_{1}(r)=H-\sum_{j=1}^{d} \int_{r}^{T} Q_{1}^{j}(\theta) d W^{j}(\theta), \quad 0 \leqslant r \leqslant T, \\
& \text { (b) } \quad P_{2}(r)=A(T, r)^{\top} P_{1}(r)+\sum_{j=1}^{d} C^{j}(T, r)^{\top} Q_{1}^{j}(r)+\int_{r}^{T}\left[A(\theta, r)^{\top} P_{2}(\theta)\right. \\
& \left.+\sum_{j=1}^{d} C^{j}(\theta, r)^{\top} Q_{2}^{j}(\theta, r)\right] d \theta-\sum_{j=1}^{d} \int_{r}^{T} Q_{2}^{j}(r, \theta) d W^{j}(\theta), 0 \leqslant r \leqslant T, \\
& \text { (c) } \quad P_{3}(r)=\partial^{2} G(r)+\sum_{j=1}^{d} C^{j}(T, r)^{\top} P_{1}(r) C^{j}(T, r) \\
& +\sum_{j=1}^{d} \int_{r}^{T}\left[C^{j}(T, r)^{\top} P_{2}(\theta)^{\top} C^{j}(\theta, r)+C^{j}(\theta, r)^{\top} P_{2}(\theta) C^{j}(T, r)\right. \\
& \left.+C^{j}(\theta, r)^{\top} P_{3}(\theta) C^{j}(\theta, r)\right] d \theta+\int_{r}^{T} \int_{r}^{T} C^{j}(\theta, r)^{\top} P_{4}\left(\theta^{\prime}, \theta\right) C^{j}\left(\theta^{\prime}, r\right) d \theta d \theta^{\prime} \tag{4.8}\\
& -\sum_{j=1}^{d} \int_{r}^{T} Q_{3}^{j}(r, \theta) d W^{j}(\theta), \quad 0 \leqslant r \leqslant T, \\
& \text { (d) } \quad P_{4}(\theta, r)=A(T, r)^{\top} P_{2}(\theta)^{\top}+\sum_{j=1}^{d} C^{j}(T, r)^{\top} Q_{2}^{j}(\theta, r)^{\top}+A(\theta, r)^{\top} P_{3}(\theta) \\
& +\sum_{j=1}^{d} C^{j}(\theta, r)^{\top} Q_{3}^{j}(\theta, r)+\int_{r}^{T}\left[\sum_{j=1}^{d} C^{j}\left(\theta^{\prime}, r\right)^{\top} Q_{4}^{j}\left(\theta, \theta^{\prime}, r\right)\right. \\
& \left.+A\left(\theta^{\prime}, r\right)^{\top} P_{4}\left(\theta, \theta^{\prime}\right)\right] d \theta^{\prime}-\sum_{j=1}^{d} \int_{r}^{T} Q_{4}^{j}\left(\theta, r, \theta^{\prime}\right) d W^{j}\left(\theta^{\prime}\right), 0 \leqslant r \leqslant \theta \leqslant T, \\
& \text { (e) } \quad P_{4}(\theta, r)=P_{4}(r, \theta)^{\top}, \quad Q_{4}\left(\theta, r, \theta^{\prime}\right)=Q_{4}\left(r, \theta, \theta^{\prime}\right)^{\top}, \quad 0 \leqslant \theta<r \leqslant T,
\end{align*}
$$

Proof. Notice that

$$
\begin{aligned}
& \mathbb{E} \int_{0}^{T} \int_{0}^{t}\left\langle Z^{1 j}(t, s), \mathbf{1}_{(\delta, \infty)}(t-s) \Delta \sigma^{j}(s)\right\rangle d s d t=\mathbb{E} \int_{0}^{T-\delta}\left\langle\int_{s+\delta}^{T} Z^{1 j}(t, s) d t, \Delta \sigma^{j}(s)\right\rangle d s \\
& =\mathbb{E} \int_{\tau}^{\tau+\varepsilon}\left\langle\int_{s+\delta}^{T} Z^{1 j}(t, s) d t, \sigma^{j}\left(s, x^{*}(s), y^{*}(s), z^{*}(s), v(s), \mu^{*}(s)\right)-\sigma^{j}(s, \Theta(s))\right\rangle d s \\
& \quad \times \mathbf{1}_{[0, T-\delta)}(\tau)+\mathbb{E} \int_{\tau+\delta}^{\tau+\delta+\varepsilon}\left\langle\sigma^{j}\left(s, x^{*}(s), y^{*}(s), z^{*}(s), u^{*}(s), v(s-\delta)\right)\right. \\
& \left.\quad-\sigma^{j}(s, \Theta(s)), \int_{s+\delta}^{T} Z^{1 j}(t, s) d t\right\rangle d s \mathbf{1}_{(0, T-\delta)}(\tau+\delta)
\end{aligned}
$$

and

$$
\left\{\begin{array}{l}
P_{2}(r)=\mathbb{E}_{\theta}\left[P_{2}(r)\right]+\sum_{j=1}^{d} \int_{\theta}^{r} Q_{2}^{j}\left(r, \theta^{\prime}\right) d W^{j}\left(\theta^{\prime}\right), \quad 0 \leqslant r \leqslant T \tag{4.9}\\
P_{3}(r)=\mathbb{E}_{\theta}\left[P_{3}(r)\right]+\sum_{j=1}^{d} \int_{\theta}^{r} Q_{3}^{j}\left(r, \theta^{\prime}\right) d W^{j}\left(\theta^{\prime}\right), \quad 0 \leqslant r \leqslant T \\
P_{4}(\theta, r)=\mathbb{E}_{\theta^{\prime}}\left[P_{4}(\theta, r)\right]+\sum_{j=1}^{d} \int_{\theta^{\prime}}^{r \wedge \theta} Q_{4}^{j}(\theta, r, s) d W^{j}(s), 0 \leqslant \theta^{\prime} \leqslant(\theta \wedge r) \leqslant T .
\end{array}\right.
$$

Then, we have the following result for the variational inequality (4.6).
Lemma 4.2. Let Assumption (A1) hold. Suppose ($\left.x^{*}(\cdot), u^{*}(\cdot)\right)$ is an optimal pair, $x^{\varepsilon}(\cdot)$ is the trajectory corresponding to $u^{\varepsilon}(\cdot)$, given by (3.4), $(\eta(\cdot), \zeta(\cdot), Y(\cdot), Z(\cdot, \cdot))$ is the solution to (4.1), $(p(\cdot), q(\cdot))$ is defined by (4.4). Then, (4.8) admits a unique adapted solution: $\left(P_{1}(\cdot), Q_{1}(\cdot)\right) \in L_{\mathbb{F}}^{2}\left(\Omega ; C\left([0, T] ; \mathbb{S}^{3 n}\right)\right) \times\left(L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{S}^{3 n}\right)\right)^{d},\left(P_{2}(\cdot), P_{3}(\cdot), P_{4}(\cdot, \cdot)\right)$ $\in L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{R}^{(3 n) \times(3 n)}\right) \times L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{S}^{3 n}\right) \times L^{2}\left(0, T ; L_{\mathbb{F}}^{2}\left(0, T ; \mathbb{R}^{(3 n) \times(3 n)}\right)\right)$, such that (4.9) holds. Furthermore, the variational inequality (4.6) can be deduced as follows:

$$
\begin{aligned}
& J\left(u^{\varepsilon}(\cdot)\right)-J\left(u^{*}(\cdot)\right)=\mathbb{E} \int_{\tau}^{\tau+\varepsilon} \Delta G(t) d t+\mathbb{E} \int_{\tau+\delta}^{\tau+\delta+\varepsilon} \Delta \tilde{G}(t) d t \mathbf{1}_{[0, T-\delta)}(\tau) \\
& \quad+\frac{1}{2} \sum_{j=1}^{d} \mathbb{E} \int_{0}^{T}\left\{D^{j}(T, t)^{\top} P_{1}(t) D^{j}(T, t)+\int_{t}^{T} D^{j}(\theta, t)^{\top} P_{3}(\theta) D^{j}(\theta, t) d \theta\right. \\
& \quad+\int_{t}^{T}\left[D^{j}(T, t)^{\top} P_{2}(\theta)^{\top} D^{j}(\theta, t)+D^{j}(\theta, t)^{\top} P_{2}(\theta) D^{j}(T, t)\right] d \theta \\
& \left.\quad+\int_{t}^{T} \int_{t}^{T} D^{j}(\theta, t)^{\top} P_{4}\left(\theta^{\prime}, \theta\right) D^{j}\left(\theta^{\prime}, t\right) d \theta d \theta^{\prime}\right\} d t+o(\varepsilon), \quad \forall \tau \in[0, T) .
\end{aligned}
$$

Proof. Note that the BSDE (4.8) (a) admits a unique solution. Then, by Proposition 2.3 and the similar proof of Theorem 5.1 in [30], (4.8) has a unique solution. For simplicity, we just give a sketch of the proof, a detailed proof can be referred to Section 4 in [30]. In the following, without loss of generality, let $d=1$. First we introduce an auxiliary process as follows:

$$
\begin{equation*}
\mathcal{X}_{1}(t, r)=\int_{0}^{r}\left[A(t, s) X_{1}(s)+B(t, s)\right] d s+\int_{0}^{r}\left[C(t, s) X_{1}(s)+D(t, s)\right] d W(s) \tag{4.11}
\end{equation*}
$$

for $0 \leqslant r \leqslant t \leqslant T$. Apparently, $\mathcal{X}_{1}(t, t)=X_{1}(t)$ for all $0 \leqslant t \leqslant T$. Applying Lemma 3.1, we have $\sup _{0 \leqslant t \leqslant T} \mathbb{E}\left[\sup _{0 \leqslant r \leqslant t}\left|\mathcal{X}_{1}(t, r)\right|^{p}\right]=O\left(\varepsilon^{\frac{p}{2}}\right)$. Let $\Theta(\cdot, \cdot):[0, T]^{2} \times \Omega \rightarrow \mathbb{R}^{(3 n) \times(3 n)}$ be a process such that for any $t \in[0, T], \Theta(t, \cdot) \in L_{\mathbb{F}}^{2}\left(0, t ; \mathbb{R}^{(3 n) \times(3 n)}\right)$. Then, by the martingale representation theorem, for any $0 \leqslant s \leqslant t \leqslant T$, there exists a unique $\Lambda(t, s, \cdot) \in\left(L_{\mathbb{F}}^{2}\left(0, s ; \mathbb{R}^{(3 n) \times(3 n)}\right)\right)^{d}$ satisfying
(4.12) $\Pi(t, s, r) \equiv \mathbb{E}_{r}[\Theta(t, s)]=\Theta(t, s)-\int_{r}^{s} \Lambda(t, s, \theta) d W(\theta), 0 \leqslant r \leqslant s \leqslant t \leqslant T$.

Applying Itô's formula to the map $r \mapsto \mathcal{X}_{1}(t, r)^{\top} \Theta(t, s) \mathcal{X}_{1}(s, r)$, we obtain for $0 \leqslant r \leqslant s \leqslant t$,

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{X}_{1}(t, r)^{\top} \Theta(t, s) \mathcal{X}_{1}(s, r)\right]=\mathbb{E}\left[\mathcal{X}_{1}(t, r)^{\top} \Pi(t, s, r) \mathcal{X}_{1}(s, r)\right] \\
&=\mathbb{E} \int_{0}^{r}\left\{X_{1}(\theta)^{\top}\left[A(t, \theta)^{\top} \Theta(t, s)+C(t, \theta)^{\top} \Lambda(t, s, \theta)\right] \mathcal{X}_{1}(s, \theta)+\mathcal{X}_{1}(t, \theta)^{\top}[\Theta(t, s) A(s, \theta)+\Lambda(t, s, \theta)\right. \\
&(4.13)\left.\times C(s, \theta)] X_{1}(\theta)+X_{1}(\theta)^{\top} C(t, \theta)^{\top} \Theta(t, s) C(s, \theta) X_{1}(\theta)+D(t, \theta)^{\top} \Theta(t, s) D(s, \theta)\right\} d \theta+o(\varepsilon) .
\end{aligned}
$$

In the following, we choose different $\Theta(\cdot, \cdot), \Pi(\cdot, \cdot, \cdot)$ and $\Lambda(\cdot, \cdot, \cdot)$ to deal with the quadratic terms about $X_{1}(\cdot)$ in (4.7). First we deal with the term $X_{1}(T)^{\top} H X_{1}(T)$.
Take $t=s=T$ and $\Theta(T, T)=H$ in (4.12). Then, from (4.8) (a), we have

$$
(\Pi(T, T, r), \Lambda(T, T, r)) \equiv\left(P_{1}(r), Q_{1}(r)\right), \quad r \in[0, T] .
$$

By (4.13), we get

$$
\begin{aligned}
& \mathbb{E}\left[X_{1}(T)^{\top} H X_{1}(T)\right]=\mathbb{E}\left[\mathcal{X}_{1}(T, T)^{\top} P_{1}(T) \mathcal{X}_{1}(T, T)\right] \\
& =\mathbb{E} \int_{0}^{T}\left\{X_{1}(r)^{\top}\left[A(T, r)^{\top} P_{1}(r)+C(T, r)^{\top} Q_{1}(r)\right] \mathcal{X}_{1}(T, r)\right. \\
& \quad+\mathcal{X}_{1}(T, r)^{\top}\left[P_{1}(r) A(T, r)+Q_{1}(r) C(T, r)\right] X_{1}(r)+X_{1}(r)^{\top} C(T, r)^{\top} \\
& \left.\quad \times P_{1}(r) C(T, r) X_{1}(r)+D(T, r)^{\top} P_{1}(r) D(T, r)\right\} d r+o(\varepsilon),
\end{aligned}
$$

which together with (4.7) yields that

$$
\begin{aligned}
\mathscr{E}(\varepsilon)= & \mathbb{E} \int_{0}^{T}\left\{X_{1}(r)^{\top}\left[A(T, r)^{\top} P_{1}(r)+C(T, r)^{\top} Q_{1}(r)\right] \mathcal{X}_{1}(T, r)\right. \\
& +\mathcal{X}_{1}(T, r)^{\top}\left[P_{1}(r) A(T, r)+Q_{1}(r) C(T, r)\right] X_{1}(r)+X_{1}(r)^{\top}\left[\partial^{2} G(r)\right. \\
& \left.\left.+C(T, r)^{\top} P_{1}(r) C(T, r)\right] X_{1}(r)+D(T, r)^{\top} P_{1}(r) D(T, r)\right\} d r+o(\varepsilon) .
\end{aligned}
$$

Next we deal with the term $X_{1}(r)^{\top}[\cdots] \mathcal{X}_{1}(T, r)$ and $\mathcal{X}_{1}(T, r)^{\top}[\cdots] X_{1}(r)$. Take $t=T$ in (4.12), let

$$
\Theta(T, r), \Lambda(T, \theta, r)) \equiv\left(P_{2}(r)^{\top}, Q_{2}(\theta, r)^{\top}\right), \quad 0 \leqslant r \leqslant \theta \leqslant T
$$

Then, by (4.13) and (4.8) we obtain

$$
\begin{aligned}
& \mathscr{E}(\varepsilon)= \mathbb{E} \int_{0}^{T}\left\{X _ { 1 } (r) ^ { \top } \left[\partial^{2} G(r)+C(T, r)^{\top} P_{1}(r) C(T, r)+\int_{r}^{T}\left(C(T, r)^{\top} P_{2}(\theta)^{\top} C(\theta, r)\right.\right.\right. \\
&\left.\left.+C(\theta, r)^{\top} P_{2}(\theta) C(T, r)\right) d \theta\right] X_{1}(r)+\int_{r}^{T}\left[X_{1}(r)^{\top}\left(P_{2}(\theta) A(T, r)+Q_{2}(\theta, r) C(T, r)\right)^{\top} \mathcal{X}_{1}(\theta, r)\right. \\
&\left.\left.+\mathcal{X}_{1}(\theta, r)^{\top}\left(P_{2}(\theta) A(T, r)+Q_{2}(\theta, r) C(T, r)\right) X_{1}(r)\right] d \theta\right\} d r+\mathbb{E} \int_{0}^{T}\left\{\int _ { r } ^ { T } \left[D(T, r)^{\top}\right.\right. \\
&14) \quad\left.\left.\times P_{2}(\theta)^{\top} D(\theta, r)+D(\theta, r)^{\top} P_{2}(\theta) D(T, r)\right] d \theta+D(T, r)^{\top} P_{1}(r) D(T, r)\right\} d r+o(\varepsilon) .
\end{aligned}
$$

Finally we eliminate the terms $X_{1}(r)^{\top}[\cdots] X_{1}(r), \mathcal{X}_{1}(\theta, r)^{\top}[\cdots] X_{1}(r)$ and their transpose. Take $t=s$ in (4.12) and let

$$
\Theta(\theta, \theta) \equiv P_{3}(\theta), \quad \Lambda(\theta, \theta, r) \equiv Q_{3}(\theta, r), \quad 0 \leqslant r \leqslant \theta \leqslant T
$$

Then, from (4.13) we derive

$$
\begin{aligned}
\mathbb{E} & \int_{0}^{T} X_{1}(r)^{\top} \Theta(r, r) X_{1}(r) d r=o(\varepsilon)+\mathbb{E} \int_{0}^{T} \int_{r}^{T}\left\{X _ { 1 } (r) ^ { \top } \left[A(\theta, r)^{\top} \Theta(\theta, \theta)\right.\right. \\
& \left.+C(\theta, r)^{\top} \Lambda(\theta, \theta, r)\right] \mathcal{X}_{1}(\theta, r)+\mathcal{X}_{1}(\theta, r)^{\top}\left[A(\theta, r)^{\top} \Theta(\theta, \theta)^{\top}+C(\theta, r)^{\top} \Lambda(\theta, \theta, r)^{\top}\right]^{\top} X_{1}(r) \\
(4.15) & \left.+X_{1}(r)^{\top} C(\theta, r)^{\top} \Theta(\theta, \theta) C(\theta, r) X_{1}(r)+D(\theta, r)^{\top} \Theta(\theta, \theta) D(\theta, r)\right\} d \theta d r .
\end{aligned}
$$

Let

$$
\Theta\left(\theta, \theta^{\prime}\right)=P_{4}\left(\theta, \theta^{\prime}\right)^{\top}, \quad \Lambda\left(\theta, r, \theta^{\prime}\right)=Q_{4}\left(\theta, r, \theta^{\prime}\right)^{\top}, \quad 0 \leqslant \theta^{\prime} \leqslant r \leqslant \theta \leqslant T
$$

Then, by (4.13) we get

$$
\begin{aligned}
& \mathbb{E} \int_{0}^{T} \int_{r}^{T} \mathcal{X}_{1}(\theta, r)^{\top} \Theta(\theta, r) X_{1}(r) d \theta d r=\mathbb{E} \int_{0}^{T}\left\{\int_{r}^{T} \int_{\theta}^{T} X_{1}(r)^{\top}\left[A\left(\theta^{\prime}, r\right)^{\top} \Theta\left(\theta^{\prime}, \theta\right)+C\left(\theta^{\prime} r\right)^{\top} \Lambda\left(\theta^{\prime}, \theta, r\right)\right]\right. \\
& \quad \times \mathcal{X}_{1}(\theta, r) d \theta^{\prime} d \theta+\int_{r}^{T} \int_{r}^{\theta} \mathcal{X}_{1}(\theta, r)^{\top}\left[A\left(\theta^{\prime}, r\right)^{\top} \Theta\left(\theta, \theta^{\top}\right)^{\top}+C\left(\theta^{\prime}, r\right)^{\top} \Lambda\left(\theta, \theta^{\prime}, r\right)^{\top}\right]^{\top} X_{1}(r) d \theta^{\prime} d \theta \\
& \left.\quad+\int_{r}^{T} \int_{\theta}^{T}\left[X_{1}(r)^{\top} C\left(\theta^{\prime}, r\right)^{\top} \Theta\left(\theta^{\prime}, \theta\right) C(\theta, r) X_{1}(r)+D\left(\theta^{\prime}, r\right)^{\top} \Theta\left(\theta^{\prime}, \theta\right) D(\theta, r)\right] d \theta^{\prime} d \theta\right\} d r+o(\varepsilon),
\end{aligned}
$$

which and (4.6), (4.14), (4.15) imply that (4.10) holds.

Remark 4.3. It is worth mentioning that the first-order adjoint equation (4.1), consisting of a BSDE and a backward SVIE, is dual with the first-order and secondorder variational equations (3.5)-(3.6), and the second-order adjoint equation (4.8), consisting of a BSDE and three coupled backward SVIEs, still can be dual with $\left(x_{1}(t)^{\top}, y_{1}(t)^{\top}, z_{1}(t)^{\top}\right)[\cdots]\left(x_{1}(t)^{\top}, y_{1}(t)^{\top}, z_{1}(t)^{\top}\right)^{\top}$, even though the pointwise state delay appears in the state equation and the terminal cost.

Remark 4.4. To deal with the cross term $x_{1}(t)^{\top}[\cdots] y_{1}(t)$ and its transpose, [18] introduced a new BSDE but required its solution to be zero. In this paper, we get rid of this strict condition. First the delayed variational equations (3.5)-(3.6) are transformed into the Volterra integral equations without delay (3.18)-(3.19), so that the delayed finite dimensional control problem is converted into another finite dimensional control problem without delay. Then from the above proof, $X_{1}(r)^{\top}[\cdots] X_{1}(r)$ contains the cross terms $x_{1}(t)^{\top}[\cdots] y_{1}(t)$ and $y_{1}(t)^{\top}[\cdots] x_{1}(t)$, so the auxiliary equation (4.11) is constructed and the set of backward SVIEs (4.8) is introduced to deal with the "cross terms", without any additional conditions.
5. General maximum principle. In this section, we obtain a general maximum principle for Problem (P), and further express first-order and second-order adjoint equations in more compact forms.
5.1. General maximum principle. First let us do some interesting analysis of the second-order adjoint equation (4.8). In the following, we suppose $\tau \in[0, T)$ and define

$$
P_{k}(\cdot):=\left\{\begin{array}{lll}
P_{k}^{(11)}(\cdot) & P_{k}^{(12)}(\cdot) & P_{k}^{(13)}(\cdot) \\
P_{k}^{(21)}(\cdot) & P_{k}^{(22)}(\cdot) & P_{k}^{(23)}(\cdot) \\
P_{k}^{(31)}(\cdot) & P_{k}^{(32)}(\cdot) & P_{k}^{(33)}(\cdot)
\end{array}\right\}, \quad k=1,2,3,4
$$

Case I: The term of $\left(P_{1}, Q_{1}\right)$.
By the definition of H, we see that

$$
\begin{equation*}
P_{1}^{(i \ell)}(r)=h_{\kappa^{i} \kappa^{\ell}}(T)-\sum_{j=1}^{d} \int_{r}^{T} Q_{1 j}^{(i \ell)}(\theta) d W^{j}(\theta), \quad \tau \leqslant r \leqslant T \tag{5.1}
\end{equation*}
$$

where $i, \ell=1,2,3$, and $\kappa^{1}:=x, \kappa^{2}:=y, \kappa^{3}:=z$. In addition,

$$
\begin{aligned}
& D^{j}(T, t)^{\top} P_{1}(t) D^{j}(T, t)=\Delta \sigma^{j}(t)^{\top} P_{1}^{(11)}(t) \Delta \sigma^{j}(t) \\
& +\Delta \sigma^{j}(t)^{\top}\left[P_{1}^{(12)}(t)+P_{1}^{(21)}(t)+P_{1}^{(22)}(t)\right] \Delta \sigma^{j}(t) \mathbf{1}_{(\delta, \infty)}(T-t)
\end{aligned}
$$

Case II: The term of $\left(P_{2}, Q_{2}\right)$.
Let us look at $\left(P_{2}, Q_{2}\right)$ in (4.8),

$$
P_{2}^{(i \ell)}(r)=\psi_{2}^{(i \ell)}(r)+\int_{r}^{T} g_{2}^{(i \ell)}(\theta, r) d \theta-\sum_{j=1}^{d} \int_{r}^{T} Q_{2 j}^{(i \ell)}(r, \theta) d W^{j}(\theta), \quad \tau \leqslant r \leqslant T
$$

where $i, \ell=1,2,3$. Set

$$
\begin{aligned}
& \left\{g_{2}^{(i \ell)}(\theta, r)\right\}_{i, \ell=1}^{3}:=A(\theta, r)^{\top} P_{2}(\theta)+\sum_{j=1}^{d} C^{j}(\theta, r)^{\top} Q_{2}^{j}(\theta, r) \\
& \left\{\psi_{2}^{(i \ell)}(r)\right\}_{i, \ell=1}^{3}:=A(T, r)^{\top} P_{1}(r)+\sum_{j=1}^{d} C^{j}(T, r)^{\top} Q_{1}^{j}(r)
\end{aligned}
$$

For $j=1, \cdots, d, \ell=1,2,3$ and $\kappa^{1}:=x, \kappa^{2}:=y, \kappa^{3}:=z$, define for $\tau \leqslant r \leqslant T$,

$$
\begin{aligned}
& \mathcal{G}_{2}^{(\ell)}(r):=h_{x \kappa^{\ell}}(T)+\int_{r}^{T} P_{2}^{(1 \ell)}(\theta) d \theta+\left[h_{y \kappa^{\ell}}(T)+\int_{r+\delta}^{T} P_{2}^{(2 \ell)}(\theta) d \theta\right]_{[0, T-\delta)}(r), \\
& \mathcal{Q}_{2 j}^{(\ell)}(r):=Q_{1 j}^{(1 \ell)}(r)+\int_{r}^{T} Q_{2 j}^{(1 \ell)}(\theta, r) d \theta+\left[Q_{1 j}^{(2 \ell)}(r)+\int_{r+\delta}^{T} Q_{2 j}^{(2 \ell)}(\theta, r) d \theta\right] \mathbf{1}_{[0, T-\delta)}(r),
\end{aligned}
$$

$$
\mathcal{K}_{2}^{(\ell)}(r):=P_{1}^{(3 \ell)}(r)+\int_{r}^{T} P_{2}^{(3 \ell)}(\theta) d \theta
$$

Then, we deduce that for $\tau \leqslant r \leqslant T$,

$$
\begin{aligned}
& P_{2}^{(1 \ell)}(r)=\mathbb{E}_{r}\left[b_{x}(r)^{\top} \mathcal{G}_{2}^{(\ell)}(r)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \mathcal{Q}_{2 j}^{(\ell)}(r)+\mathcal{K}_{2}^{(\ell)}(r)\right] \\
& P_{2}^{(2 \ell)}(r)=\mathbb{E}_{r}\left[b_{y}(r)^{\top} \mathcal{G}_{2}^{(\ell)}(r)+\sum_{j=1}^{d} \sigma_{y}^{j}(r)^{\top} \mathcal{Q}_{2 j}^{(\ell)}(r)-e^{-\lambda \delta} \mathcal{K}_{2}^{(\ell)}(r)\right] \\
& P_{2}^{(3 \ell)}(r)=\mathbb{E}_{r}\left[b_{z}(r)^{\top} \mathcal{G}_{2}^{(\ell)}(r)+\sum_{j=1}^{d} \sigma_{z}^{j}(r)^{\top} \mathcal{Q}_{2 j}^{(\ell)}(r)-\lambda \mathcal{K}_{2}^{(\ell)}(r)\right]
\end{aligned}
$$

For the P_{2} part in (4.10), we have

$$
\begin{aligned}
& \mathbb{E}_{t} \int_{t}^{T}\left[D^{j}(T, t)^{\top} P_{2}(\theta)^{\top} D^{j}(\theta, t)+D^{j}(\theta, t)^{\top} P_{2}(\theta) D^{j}(T, t)\right] d \theta \\
& =\Delta \sigma^{j}(t)^{\top} \mathbb{E}_{t}\left[\int_{t}^{T}\left(P_{2}^{(11)}(\theta)^{\top}+P_{2}^{(11)}(\theta)+\left[P_{2}^{(12)}(\theta)^{\top}+P_{2}^{(12)}(\theta)\right] \mathbf{1}_{[0, T-\delta)}(t)\right) d \theta\right. \\
& \left.\quad+\int_{t+\delta}^{T}\left[P_{2}^{(21)}(\theta)^{\top}+P_{2}^{(21)}(\theta)+P_{2}^{(22)}(\theta)^{\top}+P_{2}^{(22)}(\theta)\right] d \theta \mathbf{1}_{[0, T-\delta)}(t)\right] \Delta \sigma^{j}(t)
\end{aligned}
$$

Case III: The term of $\left(P_{4}, Q_{4}\right)$.
Let us look at $\left(P_{4}, Q_{4}\right)$ in (4.8),

$$
P_{4}^{(i \ell)}(\theta, r)=\psi_{4}^{(i \ell)}(\theta, r)+\int_{r}^{T} g_{4}^{(i \ell)}\left(\theta, \theta^{\prime}, r\right) d \theta^{\prime}-\sum_{j=1}^{d} \int_{r}^{T} Q_{4 j}^{(i \ell)}\left(\theta, r, \theta^{\prime}\right) d W^{j}\left(\theta^{\prime}\right)
$$

where $\tau \leqslant r \leqslant \theta \leqslant T, i, \ell=1,2,3$. Define

$$
\begin{aligned}
&\left\{\psi_{4}^{(i \ell)}(\theta, r)\right\}_{i, \ell=1}^{3}:= A(T, r)^{\top} P_{2}(\theta)^{\top}+\sum_{j=1}^{d} C^{j}(T, r)^{\top} Q_{2}^{j}(\theta, r)^{\top} \\
&+A(\theta, r)^{\top} P_{3}(\theta)+\sum_{j=1}^{d} C^{j}(\theta, r)^{\top} Q_{3}^{j}(\theta, r) \\
&\left\{g_{4}^{(i \ell)}\left(\theta, \theta^{\prime}, r\right)\right\}_{i, j=1}^{3}:=A\left(\theta^{\prime}, r\right)^{\top} P_{4}\left(\theta, \theta^{\prime}\right)+\sum_{j=1}^{d} C^{j}\left(\theta^{\prime}, r\right)^{\top} Q_{4}^{j}\left(\theta, \theta^{\prime}, r\right)
\end{aligned}
$$

For $\ell=1,2,3, j=1, \cdots, d$ and $\theta \geqslant r$, define

$$
\begin{aligned}
& \mathcal{G}_{4}^{(\ell)}(\theta, r):=P_{2}^{(\ell 1)}(\theta)^{\top}+P_{3}^{(1 \ell)}(\theta)+\mathbf{1}_{(\delta, \infty)}(\theta-r) P_{3}^{(2 \ell)}(\theta)+\mathbf{1}_{(\delta, \infty)}(T-r) \\
& \quad \times P_{2}^{(\ell 2)}(\theta)^{\top}+\int_{r}^{T} P_{4}^{(1 \ell)}\left(\theta, \theta^{\prime}\right) d \theta^{\prime}+\mathbf{1}_{(\delta, \infty)}(T-r) \int_{r+\delta}^{T} P_{4}^{(2 \ell)}\left(\theta, \theta^{\prime}\right) d \theta^{\prime}, \\
& \mathcal{Q}_{4 j}^{(\ell)}(\theta, r):=Q_{2 j}^{(\ell 1)}(\theta, r)^{\top}+Q_{3 j}^{(1 \ell)}(\theta, r)+\mathbf{1}_{(\delta, \infty)}(\theta-r) Q_{3 j}^{(2 \ell)}(\theta, r)+\mathbf{1}_{(\delta, \infty)}(T-r) \\
& \quad \times Q_{2 j}^{(\ell 2)}(\theta, r)^{\top}+\int_{r}^{T} Q_{4 j}^{(1 \ell)}\left(\theta, \theta^{\prime}, r\right) d \theta^{\prime}+\int_{r+\delta}^{T} Q_{4 j}^{(2 \ell)}\left(\theta, \theta^{\prime}, r\right) d \theta^{\prime} \mathbf{1}_{(\delta,+\infty)}(T-r), \\
& \mathcal{K}_{4}^{(\ell)}(\theta, r):=P_{2}^{(\ell 3)}(\theta)^{\top}+P_{3}^{(3 \ell)}(\theta)+\int_{r}^{T} P_{4}^{3 \ell}\left(\theta, \theta^{\prime}\right) d \theta^{\prime} .
\end{aligned}
$$

Then, for $\theta \geqslant r$, we have

$$
\begin{aligned}
& P_{4}^{(1 \ell)}(\theta, r)=\mathbb{E}_{r}\left[b_{x}(r)^{\top} \mathcal{G}_{4}^{(\ell)}(\theta, r)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \mathcal{Q}_{4 j}^{(\ell)}(\theta, r)+\mathcal{K}_{4}^{(\ell)}(\theta, r)\right] \\
& P_{4}^{(2 \ell)}(\theta, r)=\mathbb{E}_{r}\left[b_{y}(r)^{\top} \mathcal{G}_{4}^{(\ell)}(\theta, r)+\sum_{j=1}^{d} \sigma_{y}^{j}(r)^{\top} \mathcal{Q}_{4 j}^{(\ell)}(\theta, r)-e^{-\lambda \delta} \mathcal{K}_{4}^{(\ell)}(\theta, r)\right], \\
& P_{4}^{(3 \ell)}(\theta, r)=\mathbb{E}_{r}\left[b_{z}(r)^{\top} \mathcal{G}_{4}^{(\ell)}(\theta, r)+\sum_{j=1}^{d} \sigma_{z}^{j}(r)^{\top} \mathcal{Q}_{4 j}^{(\ell)}(\theta, r)-\lambda \mathcal{K}_{4}^{(\ell)}(\theta, r)\right]
\end{aligned}
$$

For $\theta<r$, set

$$
P_{4}^{(i \ell)}(\theta, r):=P_{4}^{(\ell i)}(r, \theta)^{\top}, \quad Q_{4}^{(i \ell)}\left(\theta, \theta^{\prime}, r\right):=Q_{4}^{(\ell i)}\left(\theta^{\prime}, \theta, r\right)^{\top}, \quad i, \ell=1,2,3 .
$$

Next we look at the P_{4} part in (4.10). Denote

$$
\begin{aligned}
& \begin{aligned}
\mathcal{P}_{4}(t):= & \int_{t}^{T} \int_{t}^{T} P_{4}^{(11)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}+\left(\int_{t+\delta}^{T} \int_{t}^{T} P_{4}^{(12)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}\right. \\
& \left.+\int_{t}^{T} \int_{t+\delta}^{T} P_{4}^{(21)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}+\int_{t+\delta}^{T} \int_{t+\delta}^{T} P_{4}^{(22)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}\right) \mathbf{1}_{[0, T-\delta)}(t) .
\end{aligned} \\
& \text { Then, we have }
\end{aligned}
$$

$$
\begin{equation*}
\mathbb{E}_{t}\left[\int_{t}^{T} \int_{t}^{T} D^{j}(\theta, t)^{\top} P_{4}\left(\theta^{\prime}, \theta\right) D^{j}\left(\theta^{\prime}, t\right) d \theta d \theta^{\prime}\right]=\Delta \sigma^{j}(t)^{\top} \mathbb{E}_{t}\left[\mathcal{P}_{4}(t)\right] \Delta \sigma^{j}(t) . \tag{5.9}
\end{equation*}
$$

Case IV: The term of $\left(P_{3}, Q_{3}\right)$.
Now, let us look at (P_{3}, Q_{3}) in (4.8),

$$
P_{3}^{(i \ell)}(r)=\psi_{3}^{(i \ell)}(r)+\int_{r}^{T} g_{3}^{(i)}(\theta, r) d \theta-\sum_{j=1}^{d} \int_{r}^{T} Q_{3 j}^{(i \ell)}(r, \theta) d W^{j}(\theta), \tau \leqslant r \leqslant T, \quad i, \ell=1,2,3 .
$$

Define

$$
\begin{aligned}
& \left\{\psi_{3}^{(i \ell)}(r)\right\}_{i, \ell=1}^{3}:=\partial^{2} G(r)+\sum_{j=1}^{d} C^{j}(T, r)^{\top} P_{1}(r) C^{j}(T, r)+\sum_{j=1}^{d} \int_{r}^{T}\left[C^{j}(T, r)^{\top} P_{2}(\theta)^{\top} C^{j}(\theta, r)\right. \\
& \left.\quad+C^{j}(\theta, r)^{\top} P_{2}(\theta) C^{j}(T, r)\right] d \theta+\sum_{j=1}^{d} \int_{r}^{T} \int_{r}^{T} C^{j}(\theta, r)^{\top} P_{4}\left(\theta^{\prime}, \theta\right) C^{j}\left(\theta^{\prime}, r\right) d \theta d \theta^{\prime} \\
& \left\{g_{3}^{(i \ell)}(\theta, r)\right\}_{i, \ell=1}^{3}:=\sum_{j=1}^{d} C^{j}(\theta, r)^{\top} P_{3}(\theta) C^{j}(\theta, r) .
\end{aligned}
$$

Then, for $\ell=1,2,3$, and $\kappa^{1}:=x, \kappa^{2}:=y, \kappa^{3}:=z$, we have

$$
\begin{array}{ll}
P_{3}^{(1 \ell)}(r)=G_{x \kappa^{\ell}}(r)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \mathbb{E}_{r}[\mathcal{P}(r)] \sigma_{\kappa^{\ell}}^{j}(r), & \tau \leqslant r \leqslant T \\
P_{3}^{(2 \ell)}(r)=G_{y \kappa^{\ell}}(r)+\sum_{j=1}^{d} \sigma_{y}^{j}(r)^{\top} \mathbb{E}_{r}[\mathcal{P}(r)] \sigma_{\kappa^{\ell}}^{j}(r), & \tau \leqslant r \leqslant T \\
P_{3}^{(3 \ell)}(r)=G_{z \kappa^{\ell}}(r)+\sum_{j=1}^{d} \sigma_{z}^{j}(r)^{\top} \mathbb{E}_{r}[\mathcal{P}(r)] \sigma_{\kappa^{\ell}}^{j}(r), & \tau \leqslant r \leqslant T
\end{array}
$$

where

$$
\mathcal{P}(r):=h_{x x}(T)+\left[h_{y x}(T)+h_{x y}(T)+h_{y y}(T)\right] \mathbf{1}_{[0, T-\delta)}(r)+\int_{r}^{T}\left[P_{2}^{(11)}(\theta)^{\top}+P_{2}^{(11)}(\theta)\right] d \theta
$$

$$
+\int_{r}^{T}\left[P_{2}^{(12)}(\theta)^{\top}+P_{2}^{12}(\theta)\right] d \theta \mathbf{1}_{[0, T-\delta)}(r)+\int_{r+\delta}^{T}\left[P_{2}^{(21)}(\theta)^{\top}+P_{2}^{(21)}(\theta)+P_{2}^{(22)}(\theta)^{\top}\right.
$$

$$
\left.+P_{2}^{(22)}(\theta)\right] d \theta \mathbf{1}_{[0, T-\delta)}(r)+\int_{r}^{T} \int_{r}^{T} P_{4}^{(11)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}+\left\{\int_{r+\delta}^{T} \int_{r}^{T} P_{4}^{(12)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}\right.
$$

$$
\left.+\int_{r}^{T} \int_{T+\delta}^{T} P_{4}^{(21)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}+\int_{r+\delta}^{T} \int_{r+\delta}^{T} P_{4}^{(22)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}\right\} \mathbf{1}_{[0, T-\delta)}(r)
$$

$$
+\int_{r}^{T} P_{3}^{(11)}(\theta) d \theta+\int_{r+\delta}^{T}\left[P_{3}^{(21)}(\theta)+P_{3}^{(12)}(\theta)+P_{3}^{(22)}(\theta)\right] d \theta \mathbf{1}_{[0, T-\delta)}(r)
$$

$$
\begin{equation*}
=\mathcal{G}_{2}^{(1)}(r)+\int_{r}^{T} \mathcal{G}_{4}^{(1)}\left(\theta^{\prime}, r\right) d \theta^{\prime}+\left[\mathcal{G}_{2}^{(2)}(r)+\int_{r+\delta}^{T} \mathcal{G}_{4}^{(2)}\left(\theta^{\prime}, r\right) d \theta^{\prime}\right] \mathbf{1}_{[0, T-\delta)}(r) \tag{5.11}
\end{equation*}
$$

Moreover, (5.11) can be reduced to the following form:

$$
\mathcal{P}(r)=\aleph(T, r)^{\top} P_{1}(T) \aleph(T, r)+\int_{r}^{T}\left[\aleph(T, r)^{\top} P_{2}(\theta)^{\top} \aleph(\theta, r)+\aleph(\theta, r)^{\top} P_{2}(\theta) \aleph(T, r)\right] d \theta
$$

$$
\begin{equation*}
+\int_{r}^{T} \int_{r}^{T} \aleph(\theta, r)^{\top} P_{4}\left(\theta^{\prime}, \theta\right) \aleph\left(\theta^{\prime}, r\right) d \theta d \theta^{\prime}+\int_{r}^{T} \aleph(\theta, r)^{\top} P_{3}(\theta) \aleph(\theta, r) d \theta \tag{5.12}
\end{equation*}
$$

where

$$
\aleph(t, s):=\left[\begin{array}{lll}
I & \mathbf{1}_{(\delta, \infty)}(t-s) I & 0 \tag{5.13}
\end{array}\right]^{\top} .
$$

Next, for the P_{3} part in (4.10), we have

$$
\begin{align*}
& \mathbb{E}_{t}\left[\int_{t}^{T} D^{j}(\theta, t)^{\top} P_{3}(\theta) D^{j}(\theta, t) d \theta\right]=\Delta \sigma^{j}(t)^{\top} \mathbb{E}_{t}\left\{\int_{t}^{T} P_{3}^{(11)}(\theta) d \theta\right. \\
& \left.+\int_{t+\delta}^{T}\left[P_{3}^{(12)}(\theta)+P_{3}^{(21)}(\theta)+P_{3}^{(22)}(\theta)\right] d \theta \mathbf{1}_{(\delta, \infty)}(T-t)\right\} \Delta \sigma^{j}(t) \tag{5.14}
\end{align*}
$$

Based on the above preparation, now we are in a position to state the general maximum principle for Problem (P). Recall (4.5) and define the Hamiltonian function $\mathcal{H}:[0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n \times d} \times \mathbb{S}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ as follows:

$$
\begin{aligned}
\mathcal{H}(\tau, x, y, z, p, q, \mathcal{P}, u, \mu): & =G(\tau, x, y, z, p, q, u, \mu)+\sum_{j=1}^{d} \operatorname{Tr}\left[\left(\sigma^{j}(\tau, x, y, z, u, \mu)\right.\right. \\
& \left.\left.-\sigma^{j}(\tau, \Theta(\tau))\right)^{\top} \mathcal{P}\left(\sigma^{j}(\tau, x, y, z, u, \mu)-\sigma^{j}(\tau, \Theta(\tau))\right)\right]
\end{aligned}
$$

Theorem 5.1. Let Assumption (A1) hold. Suppose $\left(x^{*}(\cdot), u^{*}(\cdot)\right)$ is an optimal pair, $(\eta(\cdot), \zeta(\cdot), Y(\cdot), Z(\cdot, \cdot))$ is the solution to $(4.1),(p(\cdot), q(\cdot))$ and $\mathcal{P}(\cdot)$ are defined by (4.4) and (5.11), ($\left.P_{1}(\cdot), P_{2}(\cdot), P_{3}(\cdot), P_{4}(\cdot, \cdot)\right)$ is the solution to (4.8)-(4.9). Then, the following maximum condition holds:

$$
\begin{equation*}
\Delta \mathcal{H}(\tau)+\mathbb{E}_{\tau}\left[\Delta \tilde{\mathcal{H}}(\tau+\delta) \mathbf{1}_{[0, T-\delta)}(\tau)\right] \geqslant 0, \quad \forall v \in U, \quad \text { a.e. } \quad \text { a.s. } \tag{5.15}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta \mathcal{H}(\tau):= & \mathcal{H}\left(\tau, x^{*}(\tau), y^{*}(\tau), z^{*}(\tau), p(\tau), q(\tau), \mathcal{P}(\tau), v, \mu^{*}(\tau)\right) \\
& -\mathcal{H}\left(\tau, x^{*}(\tau), y^{*}(\tau), z^{*}(\tau), p(\tau), q(\tau), \mathcal{P}(\tau), u^{*}(\tau), \mu^{*}(\tau)\right) \\
\Delta \tilde{\mathcal{H}}(\tau):= & \mathcal{H}\left(\tau, x^{*}(\tau), y^{*}(\tau), z^{*}(\tau), p(\tau), q(\tau), \mathcal{P}(\tau), u^{*}(\tau), v\right) \\
& -\mathcal{H}\left(\tau, x^{*}(\tau), y^{*}(\tau), z^{*}(\tau), p(\tau), q(\tau), \mathcal{P}(\tau), u^{*}(\tau), \mu^{*}(\tau)\right)
\end{aligned}
$$

Proof. By Lemma 4.2, (5.2), (5.4), (5.9), (5.14) and (5.11), we obtain

$$
\begin{aligned}
J\left(u^{\varepsilon}(\cdot)\right)-J\left(u^{*}(\cdot)\right)= & \mathbb{E} \int_{\tau}^{\tau+\varepsilon} \Delta G(t) d t+\mathbb{E} \int_{\tau+\delta}^{\tau+\delta+\varepsilon} \Delta \tilde{G}(t) d t \mathbf{1}_{[0, T-\delta)}(\tau) \\
& +\frac{1}{2} \sum_{j=1}^{d} \mathbb{E} \int_{0}^{T} \operatorname{Tr}\left[\Delta \sigma^{j}(t)^{\top} \mathcal{P}(t) \Delta \sigma^{j}(t)\right] d t+o(\varepsilon)
\end{aligned}
$$

Thus, similar to the proof of Theorem 4.1 in [18], we complete the proof.
Remark 5.2. Noting $u(t)$ and $u(t-\delta)$ appear in the diffusion term, the spike variation technique is used to deal with Problem (P), thus the cross terms, such as $x_{1}(t)^{\top}[\cdots] y_{1}(t)$, bring some difficulties to the introduction of adjoint equations, some novel methods have been proposed to deal with them, see Remark 4.4. Because $u(t-\delta)$ appears in Problem (P), the general maximum principle (5.15) consists of two parts: $\mathbb{E}_{\tau}[\Delta \tilde{\mathcal{H}}(\tau+\delta)]$ characterizes the maximum condition with delay, while $\Delta \mathcal{H}(\tau)$ characterizes the one without delay, in similar form to (3.20) in Chapter 3 of [35].

Remark 5.3. Compared with [18], (i) when the distributed delay appears in the control system, the general maximum principle of optimal control for stochastic differential delay systems can be obtained; (ii) the maximum condition (5.15) is similar to (5.6) in [18], but all the additional requirements in [18] are removed; (iii) a new set of backward SVIEs (4.8) is introduced to deal with the "cross term", instead of the special BSDE (5.3) in [18].

Remark 5.4. Consider general distributed measures. Then, we also derive the general maximum principle. Let $\alpha(\cdot, \cdot)$ be a $n \times n$-dimensional bounded deterministic function and $z(t)=\int_{-\delta}^{0} \alpha(t, \theta) x(t+\theta) d \theta$. Denote

$$
\begin{align*}
\mathcal{E}(t, s) & :=\int_{(t-\delta) \vee s}^{t} \alpha(t, r-t) d r, \quad \aleph(t, s):=\left[\begin{array}{c}
I \\
\mathbf{1}_{(\delta, \infty)}(t-s) I \\
\mathcal{E}(t, s)
\end{array}\right] \tag{5.16}\\
p(t):= & \eta^{0}(t)+\eta^{1}(t) \mathbf{1}_{[0, T-\delta)}(t)+\mathcal{E}(T, t)^{\top} \eta^{2}(t) \\
& +\mathbb{E}_{t}\left[\int_{t}^{T} Y^{0}(s) d s+\int_{t+\delta}^{T} Y^{1}(s) d s \mathbf{1}_{[0, T-\delta)}(t)+\int_{t}^{T} \mathcal{E}(s, t)^{\top} Y^{2}(s) d s\right], \\
q^{j}(t): & =\zeta^{0 j}(t)+\zeta^{1 j}(t) \mathbf{1}_{[0, T-\delta)}(t)+\mathcal{E}(T, t)^{\top} \zeta^{2 j}(t) \\
& +\int_{t}^{T} Z^{0 j}(s, t) d s+\int_{t+\delta}^{T} Z^{1 j}(s, t) d s \mathbf{1}_{[0, T-\delta)}(t)+\int_{t}^{T} \mathcal{E}(s, t)^{\top} Z^{2 j}(s, t) d s .
\end{align*}
$$

Then, Theorem 5.1 still holds, where $p(\cdot), q(\cdot)$ are redefined as (5.17)-(5.18) and $\mathcal{P}(\cdot)$ is defined as (5.12) with (5.16) instead of (5.13).
5.2. Extensions of adjoint equations. In this subsection, we further explore the first-order and second-order adjoint equations (4.1) and (4.8). Interestingly, under some cases, (4.1) and (4.8) have more compact forms, similar to the existing literature [18, 35, 38].
5.2.1. Extensions of first-order adjoint equations. We rewrite (4.4), and define $(\tilde{p}(\cdot), \tilde{q}(\cdot))$ as follows: for $j=1, \cdots, d$,

$$
\left\{\begin{array}{l}
p(t):=\eta^{0}(t)+\eta^{1}(t) \mathbf{1}_{[0, T-\delta)}(t)+\mathbb{E}_{t}\left[\int_{t}^{T} Y^{0}(s) d s+\int_{t+\delta}^{T} Y^{1}(s) d s \mathbf{1}_{[0, T-\delta)}(t)\right], \tag{5.19}\\
q^{j}(t):=\zeta^{0 j}(t)+\zeta^{1 j}(t) \mathbf{1}_{[0, T-\delta)}(t)+\int_{t}^{T} Z^{0 j}(s, t) d s+\int_{t+\delta}^{T} Z^{1 j}(s, t) d s \mathbf{1}_{[0, T-\delta)}(t), \\
\tilde{p}(t):=\mathbb{E}_{t}\left[\int_{t}^{T} Y^{2}(s) d s\right]+\eta^{2}(t), \quad \tilde{q}^{j}(t):=\int_{t}^{T} Z^{2 j}(s, t) d s+\zeta^{2 j}(t) .
\end{array}\right.
$$

Now we can link the first-order adjoint equation (4.1) with a set of anticipated BSDEs.
Theorem 5.5. Let Assumption (A1) hold. Suppose $\left(x^{*}(\cdot), u^{*}(\cdot)\right)$ is an optimal pair, $(\eta(\cdot), \zeta(\cdot), Y(\cdot), Z(\cdot, \cdot))$ is the solution to (4.1). Then, $(p(\cdot), q(\cdot), \tilde{p}(\cdot), \tilde{q}(\cdot))$ defined by (5.19) satisfies the following set of anticipated BSDEs:

$$
\left\{\begin{align*}
p(t)= & h_{x}(T)^{\top}+\int_{t}^{T}\left\{b_{x}(s)^{\top} p(s)+\sum_{j=1}^{d} \sigma_{x}^{j}(s)^{\top} q^{j}(s)+l_{x}(s)^{\top}+\tilde{p}(s)\right\} d s \tag{5.20}\\
& \quad-\sum_{j=1}^{d} \int_{t}^{T} q^{j}(s) d W^{j}(s), \quad t \in[T-\delta, T], \\
p(t)= & p(T-\delta)+\mathbb{E}_{T-\delta}\left[h_{y}(T)^{\top}\right]+\int_{t}^{T-\delta}\left\{b_{x}(s)^{\top} p(s)+\sum_{j=1}^{d} \sigma_{x}^{j}(s)^{\top} q^{j}(s)\right. \\
& +l_{x}(s)^{\top}+\tilde{p}(s)+\mathbb{E}_{s}\left[b_{y}(s+\delta)^{\top} p(s+\delta)+\sum_{j=1}^{d} \sigma_{y}^{j}(s+\delta)^{\top} q^{j}(s+\delta)\right. \\
& \left.\left.+l_{y}(s+\delta)^{\top}-e^{-\lambda \delta} \tilde{p}(s+\delta)\right]\right\} d s-\sum_{j=1}^{d} \int_{t}^{T-\delta} q^{j}(s) d W^{j}(s), t \in[0, T-\delta), \\
\tilde{p}(t)= & h_{z}(T)^{\top}+\int_{t}^{T}\left\{b_{z}(s)^{\top} p(s)+\sum_{j=1}^{d} \sigma_{z}^{j}(s)^{\top} q^{j}(s)+l_{z}(s)^{\top}-\lambda \tilde{p}(s)\right\} d s \\
& \quad-\sum_{j=1}^{d} \int_{t}^{T} \tilde{q}^{j}(s) d W^{j}(s), \quad t \in[0, T] .
\end{align*}\right.
$$

Proof. The first two equations of (5.20) can be unified as follows:

$$
\begin{aligned}
& p(t)=h_{x}(T)^{\top}+\mathbb{E}_{T-\delta}\left[h_{y}(T)^{\top} \mathbf{1}_{[0, T-\delta)}(t)\right]+\int_{t}^{T}\left\{l_{x}(s)^{\top}+b_{x}(s)^{\top} p(s)\right. \\
& \quad+\sum_{j=1}^{d} \sigma_{x}^{j}(s)^{\top} q^{j}(s)+\tilde{p}(s)+\mathbb{E}_{s}\left[b_{y}(s+\delta)^{\top} p(s+\delta)+\sum_{j=1}^{d} \sigma_{y}^{j}(s+\delta)^{\top} q^{j}(s+\delta)\right. \\
& \left.\left.\quad+l_{y}(s+\delta)^{\top}-e^{-\lambda \delta} \tilde{p}(s+\delta)\right] \mathbf{1}_{[0, T-\delta)}(s)\right\} d s-\sum_{j=1}^{d} \int_{t}^{T} q^{j}(s) d W^{j}(s), t \in[0, T] .
\end{aligned}
$$

For simplicity, in the following, without loss of generality, let $d=1$. By (4.2) and taking the conditional expectation on both sides of (4.1), it follows that for $0 \leqslant t \leqslant T$,

$$
\begin{aligned}
& \mathbb{E}_{t}\left[Y^{0}(t)+Y^{1}(t+\delta) \mathbf{1}_{[0, T-\delta)}(t)\right]=b_{x}(t)^{\top} p(t)+\sigma_{x}(t)^{\top} q(t)+l_{x}(t)^{\top}+\tilde{p}(t) \\
& +\mathbb{E}_{t}\left[b_{y}(t+\delta)^{\top} p(t+\delta)+\sigma_{y}(t+\delta)^{\top} q(t+\delta)+l_{y}(t+\delta)^{\top}-e^{-\lambda \delta} \tilde{p}(t+\delta)\right] \mathbf{1}_{[0, T-\delta)}(t)
\end{aligned}
$$

and

$$
Y^{2}(t)=b_{z}(t)^{\top} p(t)+\sigma_{z}(t)^{\top} q(t)+l_{z}(t)^{\top}-\lambda \tilde{p}(t) .
$$

Noting
$\int_{t}^{T} \mathbb{E}_{s}\left[\int_{t}^{s+\delta} Z^{1}(s+\delta, r) d W(r) \mathbf{1}_{[0, T-\delta)}(s)\right] d s=\int_{t}^{T} \mathbb{E}_{s}\left[\left(\int_{t}^{s}+\int_{s}^{s+\delta}\right) Z^{1}(s+\delta, r) d W(r) \mathbf{1}_{[0, T-\delta)}(s)\right] d s$ $=\int_{t}^{T} \mathbb{E}_{s}\left[\int_{t}^{s} Z^{1}(s+\delta, r) d W(r) \mathbf{1}_{[0, T-\delta)}(s)\right] d s=\int_{t}^{T-\delta} \int_{t}^{s} Z^{1}(s+\delta, r) d W(r) d s \mathbf{1}_{[0, T-\delta)}(t)$,
from (4.1) (c), one has

$$
\begin{aligned}
& \int_{t}^{T} \mathbb{E}_{s}\left[Y^{0}(s)+Y^{1}(s+\delta) \mathbf{1}_{[0, T-\delta)}(s)\right] d s=\int_{t}^{T} \mathbb{E}_{s}\left[\mathbb{E}_{t}\left[Y^{0}(s)\right]+\int_{t}^{s} Z^{0}(s, r) d W(r)\right. \\
& \left.\quad+\mathbb{E}_{t}\left[Y^{1}(s+\delta) \mathbf{1}_{[0, T-\delta)}(s)\right]+\int_{t}^{s+\delta} Z^{1}(s+\delta, r) d W(r) \mathbf{1}_{[0, T-\delta)}(s)\right] d s \\
& =\int_{t}^{T} \mathbb{E}_{t}\left[Y^{0}(s)+Y^{1}(s+\delta) \mathbf{1}_{[0, T-\delta)}(s)\right] d s \\
& \quad+\int_{t}^{T}\left[\int_{r}^{T} Z^{0}(s, r) d s+\int_{r}^{T-\delta} Z^{1}(s+\delta, r) d s \mathbf{1}_{[0, T-\delta)}(r) \mathbf{1}_{[0, T-\delta)}(t)\right] d W(r)
\end{aligned}
$$

and

$$
\int_{t}^{T} Y^{2}(s) d s=\int_{t}^{T}\left[\mathbb{E}_{t}\left[Y^{2}(s)\right]+\int_{t}^{s} Z^{2}(s, r) d W(r)\right] d s=\mathbb{E}_{t}\left[\int_{t}^{T} Y^{2}(s) d s\right]+\int_{t}^{T} \int_{s}^{T} Z^{2}(r, s) d r d W(s)
$$

Recalling (4.1) (a), one can get

$$
\begin{aligned}
& \eta^{0}(t)+\int_{t}^{T} \mathbb{E}_{t}\left[Y^{0}(s)+Y^{1}(s+\delta) \mathbf{1}_{[0, T-\delta)}(s) \mathbf{1}_{[0, T-\delta)}(t)\right] d s+\eta^{1}(t) \mathbf{1}_{[0, T-\delta)}(t)+\int_{t}^{T}\left\{\zeta^{0}(r)\right. \\
& \left.+\int_{r}^{T}\left[Z^{0}(r, s)+Z^{1}(r+\delta, s) \mathbf{1}_{[0, T-\delta)}(s) \mathbf{1}_{[0, T-\delta)}(r) \mathbf{1}_{[0, T-\delta)}(t)\right] d r+\zeta^{1}(s) \mathbf{1}_{[0, T-\delta)}(s)\right\} d W(s) \\
& =h_{x}(T)^{\top}+\int_{t}^{T}\left\{b_{x}(s)^{\top} p(s)+\sigma_{x}(s)^{\top} q(s)+l_{x}(s)^{\top}+\tilde{p}(s)+\mathbb{E}_{s}\left[b_{y}(s+\delta)^{\top} p(s+\delta)\right.\right. \\
& \left.\left.+\sigma_{y}(s+\delta)^{\top} q(s+\delta)+l_{y}(s+\delta)^{\top}-e^{-\lambda \delta} \tilde{p}(s+\delta)\right] \mathbf{1}_{[0, T-\delta)}(s)\right\} d s+\mathbb{E}_{T-\delta}\left[h_{y}(T)^{\top} \mathbf{1}_{[0, T-\delta)}(t)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \eta^{2}(t)+\int_{t}^{T} \mathbb{E}_{t}\left[Y^{2}(s)\right] d s+\int_{t}^{T}\left[\zeta^{2}(r)+\int_{r}^{T} Z^{2}(s, r) d s\right] d W(r) \\
& =h_{z}(T)^{\top}+\int_{t}^{T}\left[b_{z}(s)^{\top} p(s)+\sigma_{z}(s)^{\top} q(s)+l_{z}(s)^{\top}-\lambda \tilde{p}(s)\right] d s
\end{aligned}
$$

Thus, the proof is completed.

$$
\begin{align*}
& \text { to the following set of anticipated BSDEs: } \\
& (5.22)\left\{\begin{array}{l}
-d p(t)=\left\{b_{x}(t)^{\top} p(t)+\sum_{j=1}^{d} \sigma_{x}^{j}(t)^{\top} q^{j}(t)+l_{x}(t)^{\top}+\tilde{p}(t)+\mathbb{E}_{t}\left[l_{y}(t+\delta)^{\top}+b_{y}(t+\delta)^{\top}\right.\right. \\
\left.\left.\times p(t+\delta)+\sum_{j=1}^{d} \sigma_{y}^{j}(t+\delta)^{\top} q^{j}(t+\delta)-e^{-\lambda \delta} \tilde{p}(t+\delta)\right] \mathbf{1}_{[0, T-\delta)}(t)\right\} d t-\sum_{j=1}^{d} q^{j}(t) d W^{j}(t), \\
-d \tilde{p}(t)=\left\{b_{z}(t)^{\top} p(t)+\sum_{j=1}^{d} \sigma_{z}^{j}(t)^{\top} q^{j}(t)+l_{z}(t)^{\top}-\lambda \tilde{p}(t)\right\} d t-\sum_{j=1}^{d} \tilde{q}^{j}(t) d W^{j}(t) \\
p(T)=h_{x}(T)^{\top}, \quad \tilde{p}(T)=h_{z}(T)^{\top}
\end{array}\right.
\end{align*}
$$

Notice that [38] assumed that the control domain is convex, and studied the sufficient maximum principle for stochastic optimal control problems with general delay. Let the noisy memory process there disappears, i.e. $X_{2}^{u}(\cdot) \equiv 0$. Then, (10)-(11) in [38] are the same as (5.22) above.

Remark 5.8. Let $h_{y}, h_{z} \equiv 0$. Then, (5.21) becomes a simple anticipated BSDE consistent with (5.1) in [18], when the distributed delay disappears in Problem (P).
5.2.2. Extensions of second-order adjoint equations. In the subsection, we study three typical control systems to display second-order adjoint equations clearly.

Case I: Stochastic optimal control problems without delay

In this case, Problem (P) becomes a classical stochastic optimal control problem. From (5.1), (5.3), (5.8) and (5.10), $P_{1}^{(11)}(r), P_{2}^{(11)}(r), P_{3}^{(11)}(r), P_{4}^{(11)}(\theta, r) \neq 0,0 \leqslant$

$$
\begin{aligned}
& r, \theta \leqslant T \text {, and other terms in (4.8) are all 0. Then, (5.11) becomes } \\
& \mathcal{P}^{1}(s) \equiv \mathcal{P}(s)=h_{x x}(T)+\int_{s}^{T} \mathbb{E}_{r}\left[b_{x}(r)^{\top} \mathcal{G}_{2}^{(1)}(r)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \mathcal{Q}_{2 j}^{(1)}(r)+\mathcal{G}_{2}^{(1)}(r)^{\top} b_{x}(r)+\sum_{j=1}^{d} \mathcal{Q}_{2 j}^{(1)}(r)^{\top}\right. \\
& \left.\times \sigma_{x}^{j}(r)\right] d r+\int_{s}^{T}\left\{b_{x}(r)^{\top} \mathbb{E}_{r}\left[\int_{r}^{T} \mathcal{G}_{4}^{(1)}(\theta, r) d \theta\right]+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \int_{r}^{T} \mathcal{Q}_{4 j}^{(1)}(\theta, r) d \theta\right\} d r+\int_{s}^{T}\left\{\left(\int _ { r } ^ { T } \mathbb { E } _ { r } \left[\mathcal{G}_{4}^{(1)}(\theta,\right.\right.\right. \\
& \left.\left.\left.r)^{\top}\right] d \theta\right) b_{x}(r)+\sum_{j=1}^{d}\left(\int_{r}^{T} \mathcal{Q}_{4 j}^{(1)}(\theta, r)^{\top} d \theta\right) \sigma_{x}^{j}(r)\right\} d r+\int_{s}^{T}\left\{G_{x x}(r)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \mathbb{E}_{r}[\mathcal{P}(r)] \sigma_{x}^{j}(r)\right\} d r .
\end{aligned}
$$

Denote

$$
\begin{equation*}
\bar{P}^{1}(s):=\mathbb{E}_{s}\left[\mathcal{P}^{1}(s)\right], \quad \bar{Q}^{1}(s):=\mathcal{Q}_{2}^{(1)}(s)+\int_{s}^{T} \mathcal{Q}_{4}^{(1)}\left(\theta^{\prime}, s\right) d \theta^{\prime} \tag{5.23}
\end{equation*}
$$

Then, $\left(\bar{P}^{1}(\cdot), \bar{Q}^{1}(\cdot)\right)$ satisfies the following BSDE:

$$
\begin{aligned}
\bar{P}^{1}(s) & =h_{x x}(T)+\int_{s}^{T}\left\{b_{x}(t)^{\top} \bar{P}^{1}(t)+\sum_{j=1}^{d} \sigma_{x}^{j}(t)^{\top} \bar{Q}_{j}^{1}(t)+\bar{P}^{1}(t)^{\top} b_{x}(t)\right. \\
& +\sum_{j=1}^{d} \bar{Q}_{j}^{1}(t)^{\top} \sigma_{x}^{j}(t)+l_{x x}(t)+\left\langle p(t), b_{x x}(t)\right\rangle+\sum_{j=1}^{d}\left\langle q^{j}(t), \sigma_{x x}^{j}(t)\right\rangle \\
& \left.+\sum_{j=1}^{d} \sigma_{x}^{j}(t)^{\top} \bar{P}^{1}(t) \sigma_{x}^{j}(t)\right\} d t-\int_{s}^{T} \sum_{j=1}^{d} \bar{Q}_{j}^{1}(t) d W^{j}(t), \quad s \in[0, T]
\end{aligned}
$$

which is consistent with (3.9) in [35].
In fact, we have

$$
\mathcal{P}^{1}(s)=\mathcal{G}_{2}^{(1)}(s)+\int_{s}^{T} \mathcal{G}_{4}^{(1)}\left(\theta^{\prime}, s\right) d \theta^{\prime}
$$

and by (5.23),

$$
\begin{align*}
\mathcal{P}^{1}(s)= & h_{x x}(T)+\int_{s}^{T}\left\{b_{x}(t)^{\top} \bar{P}^{1}(t)+\sum_{j=1}^{d} \sigma_{x}^{j}(t)^{\top} \bar{Q}_{j}^{1}(t)+\bar{P}^{1}(t)^{\top} b_{x}(t)+\sum_{j=1}^{d} \bar{Q}_{j}^{1}(t)^{\top} \sigma_{x}^{j}(t)\right. \\
& \left.+\left\langle p(t), b_{x x}(t)\right\rangle+\sum_{j=1}^{d}\left\langle q^{j}(t), \sigma_{x x}^{j}(t)\right\rangle+l_{x x}(t)+\sum_{j=1}^{d} \sigma_{x}^{j}(t)^{\top} \bar{P}^{1}(t) \sigma_{x}^{j}(t)\right\} d t . \tag{5.25}
\end{align*}
$$

$$
h_{x x}(T)=\mathbb{E}_{s}\left[h_{x x}(T)\right]+\sum_{j=1}^{d} \int_{s}^{T} Q_{1 j}^{(11)}(r) d W^{j}(r), \quad s \in[0, T] .
$$

Noting (4.9), for $k=2,3, i, \ell=1,2,3$, we get

$$
\begin{gathered}
\int_{s}^{T} P_{k}^{(i \ell)}(\theta)^{\top} d \theta=\mathbb{E}_{s}\left[\int_{s}^{T} P_{k}^{(i \ell)}(\theta)^{\top} d \theta\right]+\sum_{j=1}^{d} \int_{s}^{T} \int_{s}^{\theta} Q_{k j}^{(i \ell)}(\theta, r)^{\top} d W^{j}(r) d \theta \\
(5.27) \quad=\mathbb{E}_{s}\left[\int_{s}^{T} P_{k}^{(i \ell)}(\theta)^{\top} d \theta\right]+\sum_{j=1}^{d} \int_{s}^{T} \int_{r}^{T} Q_{k j}^{(i \ell)}(\theta, r)^{\top} d \theta d W^{j}(r) \\
(5.28) \int_{s}^{T} \int_{s}^{T} P_{4}^{(i \ell)}\left(\theta^{\prime}, \theta\right) d \theta d \theta^{\prime}=\int_{s}^{T} \int_{s}^{T} \mathbb{E}_{s}\left[P_{4}^{(i \ell)}\left(\theta^{\prime}, \theta\right)\right] d \theta d \theta^{\prime}+\sum_{j=1}^{d} \int_{s}^{T} \int_{r}^{T} \int_{r}^{T} Q_{4 j}^{(i \ell)}\left(\theta^{\prime}, \theta, r\right) d \theta d \theta^{\prime} d W^{j}(r) .
\end{gathered}
$$

From (5.25)-(5.28), we obtain

$$
\mathcal{P}^{1}(s)=\bar{P}^{1}(s)+\sum_{j=1}^{d} \int_{s}^{T} \bar{Q}_{j}^{1}(t) d W^{j}(t), \quad s \in[0, T]
$$

which implies (5.24).

Case II: Stochastic optimal control problems with control delay only

 In this case, $b_{y}, b_{z}, \sigma_{y}, \sigma_{z}, l_{y}, l_{z}, h_{y}, h_{z}=0$. From (5.1), (5.3), (5.8) and (5.10), we have$$
\begin{aligned}
& P_{1}^{(11)}(r), P_{2}^{(11)}(r), P_{3}^{(11)}(r), P_{4}^{(11)}(\theta, r), P_{4}^{(12)}(\theta, r) \neq 0, \quad 0 \leqslant r \leqslant \theta \leqslant T \\
& P_{4}^{(11)}(\theta, r), P_{4}^{(21)}(\theta, r) \neq 0, \quad 0 \leqslant \theta<r \leqslant T
\end{aligned}
$$

and other terms in (4.8) are all 0 . From (5.5) and (5.6), we obtain

$$
\psi_{4}^{(12)}(\theta, r)=0, \quad g_{4}^{(12)}\left(\theta, \theta^{\prime}, r\right)=b_{x}(r)^{\top} P_{4}^{(12)}\left(\theta, \theta^{\prime}\right)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} Q_{4 j}^{(12)}\left(\theta, \theta^{\prime}, r\right)
$$

and then, for $\theta \geqslant r$,
(5.29) $P_{4}^{(12)}(\theta, r)=\int_{r}^{T}\left[b_{x}(r)^{\top} P_{4}^{(12)}\left(\theta, \theta^{\prime}\right)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} Q_{4 j}^{(12)}\left(\theta, \theta^{\prime}, r\right)\right] d \theta^{\prime}-\sum_{j=1}^{d} \int_{r}^{T} Q_{4 j}^{(12)}\left(\theta, r, \theta^{\prime}\right) d W^{j}\left(\theta^{\prime}\right)$.

On the other hand, recalling (4.9), for $\theta \geqslant r$, we have

$$
\begin{equation*}
P_{4}^{(12)}(\theta, r)=\mathbb{E}_{\theta^{\prime}}\left[P_{4}^{(12)}(\theta, r)\right]+\sum_{j=1}^{d} \int_{\theta^{\prime}}^{r} Q_{4 j}^{(12)}(\theta, r, s) d W^{j}(s) \tag{5.30}
\end{equation*}
$$

By the unique solvability of the backward SVIEs, (5.29) and (5.30) lead to that

$$
P_{4}^{(12)}(\theta, r)=0, \quad Q_{4}^{(12)}\left(\theta, r, \theta^{\prime}\right)=0, \quad \theta \geqslant r
$$

Hence, it follows that for $\theta \geqslant r$,

$$
\begin{aligned}
& \mathcal{G}_{4}^{(2)}(\theta, r)=\int_{r}^{T} P_{4}^{(12)}\left(\theta, \theta^{\prime}\right) d \theta^{\prime}=0 \\
& \mathcal{Q}_{4}^{2}(\theta, r)=\int_{r}^{T} Q_{4}^{(12)}\left(\theta, \theta^{\prime}, r\right) d \theta^{\prime}=\int_{r}^{\theta} Q_{4}^{(12)}\left(\theta, \theta^{\prime}, r\right) d \theta^{\prime}+\int_{\theta}^{T} Q_{4}^{(21)}\left(\theta^{\prime}, \theta, r\right)^{\top} d \theta^{\prime}=0
\end{aligned}
$$

Then, (5.11) becomes

$$
\begin{aligned}
& \mathcal{P}^{2}(s) \equiv \mathcal{P}(s)=h_{x x}(T)+\int_{s}^{T} \mathbb{E}_{r}\left[b_{x}(r)^{\top} \mathcal{G}_{2}^{(1)}(r)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \mathcal{Q}_{2 j}^{(1)}(r)+\mathcal{G}_{2}^{(1)}(r)^{\top} b_{x}(r)+\sum_{j=1}^{d} \mathcal{Q}_{2 j}^{(1)}(r)^{\top}\right. \\
& \left.\times \sigma_{x}^{j}(r)\right] d r+\int_{s}^{T}\left\{b_{x}(r)^{\top} \mathbb{E}_{r}\left[\int_{r}^{T} \mathcal{G}_{4}^{(1)}(\theta, r) d \theta\right]+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \int_{r}^{T} \mathcal{Q}_{4 j}^{(1)}(\theta, r) d \theta\right\} d r+\int_{s}^{T}\left\{\left(\int _ { r } ^ { T } \mathbb { E } _ { r } \left[\mathcal{G}_{4}^{(1)}(\theta,\right.\right.\right. \\
& \left.\left.\left.r)^{\top}\right] d \theta\right) b_{x}(r)+\sum_{j=1}^{d}\left(\int_{r}^{T} \mathcal{Q}_{4 j}^{(1)}(\theta, r)^{\top} d \theta\right) \sigma_{x}^{j}(r)\right\} d r+\int_{s}^{T}\left\{G_{x x}(r)+\sum_{j=1}^{d} \sigma_{x}^{j}(r)^{\top} \mathbb{E}_{r}[\mathcal{P}(r)] \sigma_{x}^{j}(r)\right\} d r .
\end{aligned}
$$

Denote

$$
\bar{P}^{2}(s):=\mathbb{E}_{s}\left[\mathcal{P}^{2}(s)\right], \quad \bar{Q}^{2}(s):=\mathcal{Q}_{2}^{(1)}(s)+\int_{s}^{T} \mathcal{Q}_{4}^{(1)}\left(\theta^{\prime}, s\right) d \theta^{\prime}
$$

Then, similar to Case I, $\left(\bar{P}^{2}(\cdot), \bar{Q}^{2}(\cdot)\right)$ also satisfies the $\operatorname{BSDE}(5.24)$.
Case III: Linear quadratic stochastic optimal control problems Consider the following state equation:

$$
\left\{\begin{aligned}
d X(t)= & {[A(t) X(t)+B(t) u(t)+\bar{B}(t) u(t-\delta)] d t } \\
& +[\bar{C}(t) X(t-\delta)+D(t) u(t)+\bar{D}(t) u(t-\delta)] d W(t), t \in[0, T] \\
X(t)= & \xi(t), u(t)=\eta(t), t \in[-\delta, 0]
\end{aligned}\right.
$$

with the quadratic cost functional

$$
\begin{aligned}
& J(u(\cdot))=\mathbb{E}[\langle G X(T), X(T)\rangle+2\langle g, X(T)\rangle] \\
& \quad+\mathbb{E} \int_{0}^{T}\left\langle\left[\begin{array}{cccc}
Q_{00}(t) & 0 & S_{00}(t)^{\top} & S_{01}(t)^{\top} \\
0 & Q_{11}(t) & S_{10}(t)^{\top} & S_{11}(t)^{\top} \\
S_{00}(t) & S_{10}(t) & R_{00}(t) & R_{01}(t) \\
S_{01}(t) & S_{11}(t) & R_{01}(t)^{\top} & R_{11}(t)
\end{array}\right]\left[\begin{array}{c}
X(t) \\
X(t-\delta) \\
u(t) \\
u(t-\delta)
\end{array}\right],\left[\begin{array}{c}
X(t) \\
X(t-\delta) \\
u(t) \\
u(t-\delta)
\end{array}\right]\right\rangle d t,
\end{aligned}
$$

where $A(\cdot), B(\cdot), \bar{B}(\cdot), \bar{C}(\cdot), D(\cdot), \bar{D}(\cdot), Q_{00}(\cdot), S_{00}(\cdot), S_{01}(\cdot), Q_{11}(\cdot), S_{10}(\cdot), S_{11}(\cdot), R_{00}(\cdot)$, $R_{01}(\cdot), R_{11}(\cdot)$ are all deterministic functions, and $G \in \mathbb{R}^{n \times n}, g \in \mathbb{R}^{n}$. In this case, (5.1), (5.3), (5.8) and (5.10) become

$$
\begin{aligned}
& P_{1}^{(11)}(r)=G, \quad P_{2}^{(11)}(r)=A(r)^{\top}\left[P_{1}^{(11)}(r)+\int_{r}^{T} P_{2}^{(11)}(\theta) d \theta\right], \quad 0 \leqslant r \leqslant T \\
& P_{4}^{(11)}(\theta, r)=A(r)^{\top} \mathcal{G}_{4}^{(1)}(\theta, r), \quad P_{4}^{12}(\theta, r)=A(r)^{\top} \mathcal{G}_{4}^{(2)}(\theta, r), \quad 0 \leqslant r \leqslant \theta \leqslant T \\
& P_{4}^{(11)}(\theta, r)=\mathcal{G}_{4}^{(1)}(r, \theta)^{\top} A(\theta), \quad P_{4}^{(21)}(\theta, r)=\mathcal{G}_{4}^{(1)}(r, \theta)^{\top} A(\theta), \quad 0 \leqslant \theta<r \leqslant T \\
& P_{3}^{(11)}(r)=Q_{00}(r), \quad P_{3}^{(22)}(r)=Q_{11}(r)+\bar{C}(r)^{\top} \mathcal{P}(r) \bar{C}(r), \quad 0 \leqslant r \leqslant T
\end{aligned}
$$

and other terms in (4.8) are all 0 . From (5.7) we have

$$
\begin{aligned}
& \mathcal{G}_{4}^{(1)}(\theta, r)=P_{2}^{(11)}(\theta)^{\top}+P_{3}^{(11)}(\theta)+\int_{r}^{T}\left[P_{4}^{(11)}\left(\theta, \theta^{\prime}\right)+\mathbf{1}_{(\delta, \infty)}\left(\theta^{\prime}-r\right) P_{4}^{(21)}\left(\theta, \theta^{\prime}\right)\right] d \theta^{\prime} \\
& \mathcal{G}_{4}^{(2)}(\theta, r)=\mathbf{1}_{(\delta, \infty)}(\theta-r) P_{3}^{(22)}(\theta)+\int_{r}^{T} P_{4}^{(12)}\left(\theta, \theta^{\prime}\right) d \theta^{\prime}
\end{aligned}
$$

Let $\theta-\delta \leqslant r \leqslant \theta, \tau+\delta \leqslant \theta \leqslant T$, and consider

$$
\mathcal{G}_{4}^{(2)}(\theta, r)=\int_{r}^{T} P_{4}^{(12)}\left(\theta, \theta^{\prime}\right) d \theta^{\prime}=\int_{r}^{\theta} P_{4}^{(12)}\left(\theta, \theta^{\prime}\right) d \theta^{\prime}=\int_{r}^{\theta} A\left(\theta^{\prime}\right)^{\top} \mathcal{G}_{4}^{(2)}\left(\theta, \theta^{\prime}\right) d \theta^{\prime}
$$

Then, we have

$$
\mathcal{G}_{4}^{(2)}(\theta, r)=0, \quad \theta-\delta \leqslant r \leqslant \theta, \quad \tau+\delta \leqslant \theta \leqslant T
$$

Hence, (5.11) becomes

$$
\begin{aligned}
& \mathcal{P}^{3}(s) \equiv \mathcal{P}(s)=G+\int_{s}^{T}\left[A(r)^{\top} \mathcal{G}_{2}^{(1)}(r)+\mathcal{G}_{2}^{(1)}(r)^{\top} A(r)\right] d r+\int_{s}^{T} A(r)^{\top}\left(\int_{r}^{T} \mathcal{G}_{4}^{(1)}(\theta, r) d \theta+\int_{r+\delta}^{T} \mathcal{G}_{4}^{(2)}(\theta, r) d \theta\right) d r \\
& +\int_{s}^{T}\left(\int_{r}^{T} \mathcal{G}_{4}^{(1)}(\theta, r)^{\top} d \theta+\int_{r+\delta}^{T} \mathcal{G}_{4}^{(2)}(\theta, r)^{\top} d \theta\right) A(r) d r+\int_{s}^{T} Q_{00}(r) d r+\int_{s+\delta}^{T}\left[Q_{11}(r)+\bar{C}(r)^{\top} \mathcal{P}(r) \bar{C}(r)\right] d r .
\end{aligned}
$$

Similar to Case I, $\mathcal{P}^{3}(\cdot)$ satisfies the following ordinary differential equation:

$$
\left\{\begin{align*}
-\dot{\mathcal{P}}^{3}(s)= & A(s)^{\top} \mathcal{P}^{3}(s)+\mathcal{P}^{3}(s)^{\top} A(s)+Q_{00}(s)+\left[Q_{11}(s+\delta)\right. \tag{5.31}\\
& \left.+\bar{C}(s+\delta)^{\top} \mathcal{P}^{3}(s+\delta) \bar{C}(s+\delta)\right] \mathbf{1}_{[0, T-\delta)}(s), \quad \text { a.e. } s \in[0, T] \\
\mathcal{P}^{3}(T)= & G .
\end{align*}\right.
$$

Remark 5.9. For Case I, when the delay disappears in the control system, the equation (5.21) satisfied by $(p(\cdot), q(\cdot))$, becomes (3.8) in [35]; the equation (5.24) satisfied by $\mathcal{P}(\cdot)$, becomes (3.9) in [35], and so Theorem 5.1 reduces to Theorem 3.2 in [35]. For Case II and Case III, (5.21), (5.24) and (5.31) are consistent with (5.1) and (5.2) in [18], respectively, thus Theorem 5.1 reduces to Theorem 5.1 in [18].
6. Concluding remarks. In this paper, a stochastic optimal control problem is considered and the control domain is allowed to be non-convex. The pointwise state delay, distributed state delay and pointwise control delay can appear in the diffusion term and the terminal cost. Via the theory of backward stochastic Volterra integral systems, we transform delayed variational equations into Volterra integral equations without delay, introduce some new second-order adjoint equations and derive a general maximum principle, without any additional conditions. Finally, to express adjoint equations more compact, we in detail discuss them for three typical control systems.

REFERENCES

[1] L. Chen and Z. Wu, Maximum principle for the stochastic optimal control problem with delay and application, Automatica J. IFAC, 46 (2010), pp. 1074-1080.
[2] L. Chen and Z. Wu, Stochastic optimal control problem in advertising model with delay, J. Syst. Sci. Complex., 33 (2020), pp. 968-987.
[3] L. Chen and Z. Yu, Maximum principle for nonzero-sum stochastic differential game with delays, IEEE Trans. Automat. Control, 60 (2015), pp. 1422-1426.
[4] R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Lect. Notes Control Inform. Sci., 8, Springer-Verlag, Berlin-New York, 1978.
[5] M. C. Delfour and S. K. Mitter, Controllability, observability and optimal feedback control of affine hereditary differential systems, SIAM J. Control Optim., 10 (1972), pp. 298-328, https://doi.org/10.1137/0310023.
[6] G. Duan, Fully actuated system approaches for continuous-time delay systems: part 1. Systems with state delays only, Sci. China Inf. Sci., 66 (2023), 112201.
[7] G. Guatteri and F. Masiero, Stochastic maximum principle for problems with delay with dependence on the past through general measures, Math. Control Relat. Fields, 11 (2021), pp. 829-855.
[8] Y. Hamaguchi, On the maximum principle for optimal control problems of stochastic Volterra integral equations with delay, Appl. Math. Optim., 87 (2023), 42.
[9] J. Huang, X. Li and T. Wang, Mean-field linear-quadratic-gaussian ($L Q G$) games for stochastic integral systems, IEEE Trans. Automat. Control, 61 (2016), pp. 2670-2675.
[10] J. Huang and J. Shi, Maximum principle for optimal control of fully coupled forward-backward stochastic differential delayed equations, ESAIM: Control Optim. Calc. Var., 18 (2012), pp. 1073-1096.
[11] A. IChikawa, Quadratic control of evolution equations with delays in control, SIAM J. Control Optim., 20 (1982), pp. 645-668, https://doi.org/10.1137/0320048.
[12] H. Kushner, On the stochastic maximum principle: Fixed time of control, J. Math. Anal. Appl., 11 (1965), pp. 78-92.
[13] H. Kushner, Numerical Methods for Controlled Stochastic Delay Systems, Birkhäuser, Boston, 2008.
[14] E. B. Lee and Y. You, Optimal syntheses for infinite-dimensional linear delayed state-output systems: a semicausality approach, Appl. Math. Optim., 19 (1989), pp. 113-136.
[15] J. Lin, Adapted solution of a backward stochastic nonlinear Volterra integral equation, Stochastic Anal. Appl., 20 (2002), pp. 165-183.
[16] X. Mao, Stochastic Differential Equations and Their Applications, Horwood, New York, 1997.
[17] X. Mao and S. Sabanis, Delay geometric Brownian motion in financial option valuation, Stochastics: Inter. J. Proba. Stoch. Proc., 85 (2013), pp. 295-320.
[18] W. Meng and J. Shi, A global maximum principle for stochastic optimal control problems with delay and applications, Syst. \& Control Lett. 150 (2021), 104909.
[19] S. E. A. Mohammed, Stochastic Functional Differential Equations, Pitman, 1984.
[20] S. E. A. Mohammed, Stochastic differential equations with memory: theory, examples and applications, in Stochastic Analysis and Related Topics 6, Proceedings of the 6th OsloSilivri Workshop Geilo 1996, Progress in Probability 42, L. Decreusefond, Jon Gjerde, B. Øksendal and A. S. Üstünel, eds., Birkhäuser, Boston, 1998, pp. 1-77.
[21] Y. Ni, K. F. C. Yiu, H. Zhang and J. Zhang, Delayed optimal control of stochastic LQ problem, SIAM J. Control Optim., 55 (2017), pp. 3370-3407, https://doi.org/10.1137/16M1100897.
[22] B. Øksendal and A. Sulem, A maximum principle for optimal control of stochastic systems with delay, with applications to finance, In: Optimal Control and Partial Differential Equations, J. M. Menaldi, E. Rofman, A. Sulem (Eds.), ISO Press, Amsterdam, (2000), pp. 64-79.
[23] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Syst. \& Control Lett., 14 (1990), pp. 55-61.
[24] S. Peng, A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28 (1990), pp. 966-979, https://doi.org/10.1137/0328054.
[25] S. Peng and Z. Yang, Anticipated backward stochastic differential equation, Ann. Probab., 37 (2009), pp. 877-902.
[26] Y. Shen and Y. Zeng, Optimal investment-reinsurance with delay for mean-variance insurers: a maximum principle approach, Insurance Math. Econom., 57 (2014), pp. 1-12.
[27] R. B. Vinter and R. H. Kwong, The infinite time quadratic control problem for linear systems with state and control delays: an evolution equation approach, SIAM J. Control Optim., 19 (1981), pp. 139-153, https://doi.org/10.1137/0319011.
[28] V. Volterra, Theory of Functional and Integral and Integro-Differential Equations, Dover Publications Inc., New York, 1959.
[29] T. Wang, Necessary conditions of Pontraygin's type for general controlled stochastic Volterra integral equations, ESAIM: Control Optim. Calc. Var., 26 (2020), 16.
[30] T. Wang and J. Yong, Spike variation for stochastic Volterra integral equations, SIAM J. Control Optim., 61 (2023), pp. 3608-3634, https://doi.org/10.1137/22M1522097.
[31] T. WANG and H. Zhang, Optimal control problems of forward-backward stochastic Volterra integral equations with closed control regions, SIAM J. Control Optim., 55 (2017), pp. 25742602, https://doi.org/10.1137/16M1059801.
[32] S. Wu and G. WANG, Optimal control problem of backward stochastic differential delay equation under partial information, Syst. \& Control Lett., 82 (2015), pp. 71-78.
[33] J. Xu, J. Shi and H. Zhang, A leader-follower stochastic linear quadratic differential game with time delay, Sci. China Inf. Sci., 61 (2018), 112202.
[34] J. YONG, Well-posedness and regularity of backward stochastic Volterra integral equations, Probab. Theory Related Fields, 142 (2008), pp. 21-77.
[35] J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.
[36] Z. Yu, The stochastic maximum principle for optimal control problems of delay systems involving continuous and impulse controls, Automatica J. IFAC, 48 (2012), pp. 2420-2432.
[37] F. Zhang, Stochastic maximum principle for optimal control problems involving delayed systems, Sci. China Inf. Sci., 64 (2021), 119206.
[38] F. Zhang, Sufficient maximum principle for stochastic optimal control problems with general delays, J. Optim. Theory Appl., 192 (2022), pp. 678-701.
[39] H. Zhang and J. Xu, Control for Itô stochastic systems with input delay, IEEE Trans. Automat. Control, 62 (2017), pp. 350-365.

[^0]: *Submitted to the editors DATE.
 Funding: This work was supported by the National Key $R \& D$ Program of China (2018YFA0703800, 2022YFA1006104), the National Natural Science Foundation of China (T2293770, 11971266, 11831010, 11971332, 11931011), the Shandong Provincial Natural Science Foundations (ZR2022JQ01, ZR2020ZD24, ZR2019ZD42), and the Science Development Project of Sichuan University (2020SCUNL201).
 \dagger Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. (mengwj@mail.sdu.edu.cn).
 \ddagger School of Mathematics, Shandong University, Jinan 250100, China. (shijingtao@sdu.edu.cn).
 § Corresponding author. School of Mathematics, Sichuan University, Chengdu 610065, China. (wtxiao2014@scu.edu.cn).
 ${ }^{\top}$ Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100149, China. (jif@iss.ac.cn).

