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Abstract. In this paper, we solve an open problem and obtain a general maximum principle4
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1. Introduction. The study of optimal control problem has been a hot topic for16

decades, and maximum principle has been one of the main approaches to address the17

control problems. In 1965, Kushner (see [12]) firstly studied the maximum principle18

for the stochastic optimal control problem, where the diffusion term does not contain19

state and control. Since then, extensive literature has emerged to study the stochastic20

optimal control problems. However, either the control domain must be convex, or the21

diffusion term does not contain the control. In 1990, Peng (see [24]) completely solved22

the stochastic optimal control problem and obtained the general maximum principle,23

by means of backward stochastic differential equations (BSDEs) as adjoint equations.24

On the other hand, in the real world, the memory affect always exists. The increment25

of the control system not only depends on the current state, but also depends on26

the past state. Also when the controller decides to exert control, it takes some time27

to exercise the action. Therefore, it has profound theory importance and extensive28

application value to study the control problems for systems with both state delay29

and control delay. Usually stochastic differential delay equations (SDDEs) are used30

to describe these delayed control systems. More details about SDDEs can be referred31

to [13,16,19,20].32

Given a time duration [0, T ], for a non-empty set U ⊂ Rm, not necessarily convex,33

a constant time delay parameter δ ∈ (0, T ) and a constant λ ∈ R, in this paper we34
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consider the system of the following form:35

(1.1)


dx(t) = b

(
t, x(t), x(t− δ),

∫ 0

−δ

eλθx(t+ θ)dθ, u(t), u(t− δ)
)
dt

+σ
(
t, x(t), x(t−δ),

∫ 0

−δ

eλθx(t+ θ)dθ,u(t),u(t−δ)
)
dW (t), t ∈ [0, T ],

x(t) = ξ(t), u(t) = γ(t), t ∈ [−δ, 0],

36

where x(·) ∈ Rn is state and u(·) ∈ U is control. Suppose that (Ω,F ,F,P) is a37

complete filtered probability space and the filtration F = {Ft}t≥0 is generated by a d-38

dimensional standard Brownian motion {W (t)}t≥0. b, σ are given random coefficients39

with proper dimensions. Deterministic continuous function ξ(·) and square integrable40

function γ(·) are the initial trajectories of the state and the control, respectively. We41

associate (1.1) with the following cost functional42

J(u(·)) = E
[ ∫ T

0

l
(
t, x(t), x(t− δ),

∫ 0

−δ

eλθx(t+ θ)dθ, u(t), u(t− δ)
)
dt43

+h
(
x(T ), x(T − δ),

∫ 0

−δ

eλθX(T + θ)dθ
)]
,(1.2)44

where l, h are given random coefficients with proper dimensions. Define the admissible45

control set as follows:46

Uad :=
{
u(·) : [−δ, T ] → Rm

∣∣u(·) is a U -valued, square-integrable, F-adapted

process and u(t) = γ(t), t ∈ [−δ, 0]
}
.

We state the optimal control problem as follows:47

Problem (P). Our object is to find a control u∗(·) over Uad such that (1.1) is48

satisfied and (1.2) is minimized, i.e.,49

J(u∗(·)) = inf
u(·)∈Uad

J(u(·)).

Any u∗(·) ∈ Uad that achieves the above infimum is called an optimal control50

and the corresponding solution x∗(·) is called the optimal trajectory. (x∗(·), u∗(·))51

is called an optimal pair. Optimal control problems of stochastic differential delay52

systems are widely used in economics, engineering and medicine (see [2,17,26,33]), and53

thus have attracted more and more scholars’ attention. Take an optimal consumption54

problem as an example, at time t let x(t), u(t) be the wealth, the consumption amount,55

respectively. It is reasonable to suppose that the wealth increment is a combination56

of the present value x(t) plus some sliding average of previous value
∫ 0

−δ
eλθx(t+ θ)dθ57

and negative consumption amount u(t). Therefore, the wealth equation satisfied by58

x(·) has the form of (1.1). The consumer always wants to find an optimal consumption59

strategy u∗(·) to maximize his terminal wealth E[X(T )] and consumption satisfaction60

E
∫ T

0
uγ(t)
γ dt, where γ∈(0,1), 1−γ is the relative risk aversion of the consumer. Thus,61

the cost functional (1.2) can be chosen as E
[
−X(T )−

∫ T

0
uγ(t)
γ dt

]
. With different levels62

of consumption packages for consumers to select, the value set U of the consumption63

amount u(t) should be limited and not necessarily convex. This typical consumption64

problem is a case of Problem (P), which motivates us to study the maximum principle65

for Problem (P).66

So far, there have been extensive literature to study optimal control problems of67

stochastic differential delay systems. Øksendal and Sulem in [22] studied the sufficient68

maximum principle for the stochastic optimal control problem with convex control69

domain, and required the solution of certain adjoint equation to be zero due to the70
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lack of Itô formula to deal with pointwise state delay terms. Chen and Wu in [1]71

introduced a class of anticipated BSDEs as the adjoint equations and obtained the72

maximum principle. Although [1] removed the “zero-solution” condition in [22], the73

control domain is still convex. Recently, Meng and Shi in [18] addressed the stochastic74

optimal control problem, allowed the control domain to be non-convex, and gave75

the general maximum principle. However, the solution of some second-order adjoint76

equation must be zero, since at that moment there is no proper method to eliminate77

the cross terms of states and their delay terms. More related literature can be referred78

to [3, 7, 10,21,32,36–39].79

In this paper, we consider the stochastic optimal control problem associated with80

(1.1), (1.2), and derive the general maximum principle with arbitrary non-empty81

control domain U . Different from all the aforementioned literature, we study the82

optimal control problem from a new viewpoint of forward stochastic Volterra integral83

systems and develop some effective techniques. More precisely, inspired by [8], we first84

properly transform the delayed first-order variational equation into a linear forward85

stochastic Volterra integral equation (SVIE) without delay. Then, we combine it with86

the original first-order variational equation, lift them up, and end up with a higher87

dimensional linear forward SVIE. Eventually, we adapt the arguments developed by88

Wang and Yong (see [30]) for optimal control problems of forward stochastic Volterra89

integral systems into our framework and derive the main results accordingly.90

Forward Volterra integral systems were introduced by Italian mathematician91

Volterra (see [28]). So far there have been extensive literature about the optimal92

control problems of forward Volterra integral systems. However, there are very little93

work to study the optimal control of forward stochastic Volterra integral systems.94

One possible reason is that until 2002 the theory of Type-I backward SVIEs was95

established by Lin (see [15]). Then, in 2006 Yong (see [34]) proposed Type-II back-96

ward SVIEs and firstly derived the maximum principle for optimal control problems97

of forward stochastic Volterra integral systems with convex control domain. Until98

recently, Wang and Yong in [30] introduced an auxiliary process and obtained the99

general maximum principle, where the control domain is allowed to be non-convex.100

More references can be referred to [29,31].101

As far as we know, a number of papers transform the delayed control problem102

into a control problem of Volterra integral systems. For example, in [9], they used103

proper variation of constants formula to transform equivalently the delayed quadratic104

optimal control problem into that of a linear Volterra integral system. Similar ideas105

also happened in [14] in infinite dimensional setting. On the other hand, there are also106

other methods to transform the delayed system to another system (see [4–6, 11, 27]).107

Among them, the delayed finite dimensional problem was lifted up to an infinite108

dimensional problem without delay. A limitation of such method lies in the high109

regularity assumption (such as continuity and differentiability) for the coefficients110

when going back to the original problem. Notice that our transformation in the111

current paper are essentially different from the above. In addition, by our arguments112

on (1.1), there is no need to introduce infinite dimensional analysis.113

The innovations and contributions of this paper are as follows:114

(i) The control system is very general. The control domain is not required to be115

convex, pointwise and distributed state delay appear not only in the state equation116

and the running cost, but also in the terminal cost, and pointwise control delay117

appears in the diffusion term and the running cost. Thus, our model can cover most118

control systems in the existing literature, such as [1, 18, 22, 39]. The cross terms119
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“x1(t)
⊤[· · · ]y1(t)” and “y1(t)

⊤[· · · ]x1(t)” appear in the variational inequality, and120

make it difficult to seek adjoint equations for variational equations of point state121

delay.122

(ii) A general maximum principle is obtained. It is simple and concise, consisting123

of two parts: one describes the maximum condition with delay, and the other describes124

the maximum condition without delay. In contrast with [18], the strict “zero-solution”125

condition imposed on the adjoint equation is successfully removed.126

(iii) A new method is proposed to treat cross terms. How to deal with the cross127

terms in the variational inequality, is a key yet difficult problem in obtaining the128

general maximum principle. Inspired by [30], we solve this hard issue by the theory129

of forward, backward stochastic Volterra integral systems.130

(iv) Novel adjoint equations are introduced. The first-order adjoint equations131

consist of a simple BSDE and a backward SVIE, while the second-order adjoint equa-132

tions consist of a simple BSDE and three coupled backward SVIEs. They are used to133

be dual with the variational equations, and eliminate the variational processes in the134

variational inequality, even if the control domain is non-convex and pointwise state135

delay appears in both the state equation and the terminal cost.136

(v) The adjoint equations are expressed in more compact forms. The first-order137

adjoint equation is written as a set of anticipated BSDEs. The second-order ad-138

joint equation reduces to the classical scenario when our delay system reduces to a139

stochastic differential system.140

The rest of this paper is organized as follows. In Section 2, some basic results141

are displayed. In Section 3, the delayed variational equations are transformed into142

Volterra integral equations without delay, and then the adjoint equations are intro-143

duced in Section 4. In Section 5, the maximum principle is stated and some careful144

analysis on the adjoint equations are spread out. Finally, Section 6 gives the conclud-145

ing remarks.146

2. Preliminaries. For any A,B ∈ Rm×d, we define by ⟨A,B ⟩ = Tr[AB⊤] the147

inner product in Rm×d with norm | · |, and Sn the set of all n×n symmetric matrices.148

Let Et[ · ] ≡ E[ · |Ft] be the conditional expectation with respect to Ft, t ∈ [0, T ], and149

I is the identity matrix of proper dimensions. For t ∈ [0, T ], denote by L2
Ft
(Ω;Rn)150

the Hilbert space consisting of Rn-valued Ft-measurable random variable ξ such that151

E|ξ|2 < ∞, by L2
F(0, T ;Rn) the Hilbert space consisting of F-adapted process ϕ(·)152

such that E
∫ T

0
|ϕ(t)|2dt <∞, by L2

F(Ω;C([0, T ];Rn)) the Banach space consisting of153

Rn-valued F-adapted continuous process ϕ(·) such that E
[

sup
0⩽t⩽T

|ϕ(t)|2
]
<∞, and by154

155 L2(0, T ;L2
F(0, T ;Rn)) the space consisting of Rn-valued process ϕ(·, ·) : [0, T ]2 ×Ω →156

Rn such that for almost all t ∈ [0, T ], ϕ(t, ·)∈L2
F(0, T ;Rn), E

∫ T

0

∫ T

0
|ϕ(t, s)|2dsdt <∞.157

Consider the following SDDE:158

(2.1)


dx̃(t) = b̃

(
t, x̃(t), x̃(t− δ),

∫ 0

−δ

eλθx̃(t+ θ)dθ
)
dt

+σ̃
(
t, x̃(t), x̃(t− δ),

∫ 0

−δ

eλθx̃(t+ θ)dθ
)
dW (t), t ∈ [0, T ],

x̃(t) = ξ̃(t), t ∈ [−δ, 0],

159

where δ > 0 is the constant delay time, λ ∈ R is a constant, deterministic continuous160

function ξ̃(·) is the given initial path of the state, and random coefficients b̃, σ̃ are161

given mappings satisfying:162

(H1) There exists a constant L > 0 such that163
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|b̃(t, x, y, z)− b̃(t, x′, y′, z′)|+ |σ̃(t, x, y, z)− σ̃(t, x′, y′, z′)|164

⩽ L(|x−x′|+ |y− y′|+ |z− z′|), ∀ t ∈ [0, T ], x, y, z, x′, y′, z′ ∈ Rn;165

(H2) sup
0⩽t⩽T

(
|b̃(t, 0, 0, 0)|+ |σ̃(t, 0, 0, 0)|

)
<∞.166

By standard Picard iteration method we derive the following result, and readers167

can refer to [19].168

Proposition 2.1. Suppose (H1)-(H2) hold. Then, the SDDE (2.1) admits a169

unique solution, and there exists a constant C > 0 such that for p ⩾ 2,170

E
[
sup

0⩽t⩽T
|x̃(t)|p

]
⩽C

[
sup

−δ⩽θ⩽0
|ξ̃(θ)|p+E

(∫ T

0

|b̃(s, 0, 0, 0)|ds
)p
+E
(∫ T

0

|σ̃(s, 0, 0, 0)|2ds
) p

2
]
.

Let R+ be the space of real numbers not less than zero. Consider the following171

anticipated BSDE:172

(2.2)

{
−dY (t)=g

(
t,Y (t),Z(t),Y (t+δ1(t)),Z(t+δ2(t))

)
dt−Z(t)dW (t), t ∈ [0, T ],

Y (t) = α(t), Z(t) = β(t), t ∈ [T, T +K].
173

Here, terminal conditions α(·) ∈ L2
F(Ω;C([T, T + K];Rm)) and β(·) ∈ L2

F(T, T +174

K;Rm×d) are given, δ1(·) and δ2(·) are given R+-valued functions defined on [0, T ]175

satisfying:176

(H3) (i) There exists a constant K ⩾ 0 such that for all s ∈ [0, T ], s + δ1(s) ⩽177

T +K, s+ δ2(s) ⩽ T +K;178

(ii) There exists a constant M ⩾ 0 such that for all t ∈ [0, T ] and all nonnegative179

and integrable function f(·),180 ∫ T

t

f(s+ δ1(s))ds ⩽M

∫ T+K

t

f(s)ds,

∫ T

t

f(s+ δ2(s))ds ⩽M

∫ T+K

t

f(s)ds.181

We impose the following conditions to the generator of the equation (2.2):182

(H4) g(s, ω, y, z, α, β) : Ω × Rm × Rm×d × L2
Fr

(Ω;Rm) × L2
Fr′

(Ω;Rm×d) →183

L2
Fs
(Ω;Rm) for all s ∈ [0, T ], where r,r′ ∈ [s, T+K], and E

[ ∫ T

0
|g(s, 0, 0, 0, 0)|2ds

]
<+∞.184

(H5) There exists a constant C > 0 such that for all s ∈ [0, T ], y, ỹ ∈ Rm,185

z, z̃ ∈ Rm×d, α(·), α̃(·) ∈ L2
F (s, T +K;Rm), β(·), β̃(·) ∈ L2

F
(
s, T +K;Rm×d

)
, r, r′ ∈186

[s, T +K], we have187 ∣∣g(s, y, z, α(r), β(r′))− g(s, ỹ, z̃, α̃(r), β̃(r′))
∣∣

⩽ C
(
|y − ỹ|+ |z − z̃|+ Es

[
|α(r)− α̃(r)|+ |β(r′)− β̃(r′)|

])
.

Proposition 2.2. (see [25]) Let (H3)-(H5) hold. Then, for any given α(·)∈L2
F(Ω;188

C([T, T+K];Rm)) and β(·)∈L2
F(T, T+K;Rm×d), the equation (2.2) admits a unique189

Ft-adapted solution pair (Y (·), Z(·))∈L2
F(Ω;C([0, T+K];Rm))×L2

F(0, T+K;Rm×d).190

Consider the following backward SVIE:191

(2.3) Ỹ (t) = ψ(t) +

∫ T

t

g̃
(
t, s, Ỹ (s), Z̃(t, s), Z̃(s, t)

)
ds−

∫ T

t

Z̃(t, s)dW (s), t ∈ [0, T ],192

where g̃ is the given function satisfying:193

(H6) g̃ is B([0, T ]2×Rm×Rm×d×Rm×d)⊗FT−measurable such that s 7→ g̃(t, s, y, z, ζ)194

is progressively measurable for all (t, y, z, ζ) ∈ [0, T ]× Rm × Rm×d × Rm×d, and195

E
∫ T

0

(∫ T

t

|g̃(t, s, 0, 0, 0)|ds
)2

dt <∞.

Moreover,196
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∣∣g̃(t, s, y, z, ζ)− g̃(t, s, ȳ, z̄, ζ̄)
∣∣ ⩽ L(t, s)

(
|y − ȳ|+ |z − z̄|+ |ζ − ζ̄|

)
,

∀ 0 ⩽ t ⩽ s ⩽ T, y, ȳ ∈ Rm, z, z̄, ζ, ζ̄ ∈ Rm×d, a.s.

where L is a deterministic function such that for some ε > 0,197

sup
t∈[0,T ]

∫ T

t

L(t, s)2+εds <∞.

Proposition 2.3. (see [34]) Let (H6) hold. Then, for any B([0, T ])⊗FT -measura198

-ble process ψ(·) satisfying E
∫ T

0
|ψ(t)|2dt<∞, the backward SVIE (2.3) admits a unique199

adapted solution (Y (·), Z(·, ·)) ∈ L2
F(0, T ;Rm)× L2(0, T ;L2

F(0, T ;Rm×d)) satisfying200

Ỹ (t) = Es[Ỹ (t)] +

∫ t

s

Z̃(t, r)dW (r), a.e. t ∈ [s, T ].

Moreover, for any s ∈ [0, T ], the following estimate holds:201

E
[ ∫ T

s

|Ỹ (t)|2dt+
∫ T

s

∫ T

s

|Z̃(t, r)|2drdt
]

⩽CE
[ ∫ T

s

|ψ(t)|2dt+
∫ T

s

(∫ T

t

|g̃(t, r, 0, 0, 0)|dr
)2

dt

]
.

3. A novel transformation from SDDE to SVIE. In this section, we present202

the variational equations to be studied, then make some interesting transformations203

to them. Similar transformation also appeared in [8].204

Denote205

(3.1) y(t) := x(t− δ), z(t) :=

∫ 0

−δ

eλθx(t+ θ)dθ, µ(t) := u(t− δ).206

Then, we can rewrite the state equation (1.1) in a more concise form as follows:207

(3.2)


dx(t) = b(t, x(t), y(t), z(t), u(t), µ(t))dt

+σ(t, x(t), y(t), z(t), u(t), µ(t))dW (t), t ∈ [0, T ],

x(t) = ξ(t), u(t) = γ(t), t ∈ [−δ, 0].
208

And the cost (1.2) becomes209

(3.3) J(u(·)) = E
[ ∫ T

0

l(t, x(t), y(t), z(t), u(t), µ(t))dt+ h(x(T ), y(T ), z(T ))

]
.210

Throughout the paper, we impose the following assumptions.211

(A1) (i) The map (x, y, z) 7→ b = b(t, x, y, z, u, µ), σ = σ(t, x, y, z, u, µ), l =212

l(t, x, y, z, u, µ), h = h(x, y, z) are twice continuously differentiable in (x, y, z). They213

and all their derivatives fκi , fκiκℓ are continuous in (x, y, z, u, µ), i, ℓ = 1, 2, 3. Here214

f = b, σ, l, h and κ1 := x, κ2 := y, κ3 := z.215

(ii) Denote f = b, σ and g = l, h. For i, ℓ = 1, 2, 3, fκi , fκiκℓ , gκiκℓ are bounded,216

where κ1 = x, κ2 = y, κ3 = z. There exists a constant C such that217

|f(t, 0, 0, 0, u, µ)|+ |g(t, 0, 0, 0, u, µ)|+ |gκi(t, 0, 0, 0, u, µ)| ⩽ C, ∀ u, µ ∈ U, t ⩾ 0.

(iii) The initial trajectory of the state ξ(·) is a deterministic continuous func-218

tion, and the initial trajectory of the control γ(·) is a deterministic square integrable219

function.220

Under (A1), the SDDE (3.2) admits a unique solution by Proposition 2.1 above221

or Theorem 2.1 ( [19], Chapter II), hence the cost functional (3.3) is well-defined and222

Problem (P) is meaningful.223
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Since the control domain U is an arbitrary non-empty set, not necessarily convex,224

we then apply the spike variation technique to deal with Problem (P). Let u∗(·) be225

the optimal control and x∗(·) be the optimal trajectory. Let 0 < ε < δ, for any given226

τ ∈ [0, T ), define uετ (t) for t ∈ [0, T ] as follows:227

uετ (t) :=

{
u∗(t), t /∈ [τ, τ + ε],

v(t), t ∈ [τ, τ + ε],
(3.4)228

which is a perturbed admissible control of the form, where v(·) is any admissible229

control, and (xε(·), yε(·), zε(·)) is defined similar to (3.1).230

Inspired by [24], we introduce the variational equations:231

(3.5)



dx1(t) =
[
bx(t)x1(t) + by(t)y1(t) + bz(t)z1(t) + ∆b(t)

]
dt

+

d∑
j=1

[
σj
x(t)x1(t)+σ

j
y(t)y1(t)+σ

j
z(t)z1(t)+∆σj(t)

]
dW j(t), t∈ [0, T ],

x1(t) = 0, t ∈ [−δ, 0],

232

(3.6)



dx2(t) =
[
bx(t)x2(t) + by(t)y2(t) + bz(t)z2(t)

+
1

2

(
x1(t)

⊤, y1(t)
⊤, z1(t)

⊤)∂2b(t)(x1(t)⊤, y1(t)⊤, z1(t)⊤)⊤]dt
+

d∑
j=1

[
σj
x(t)x2(t) + σj

y(t)y2(t) + σj
z(t)z2(t)

+
1

2

(
x1(t)

⊤, y1(t)
⊤, z1(t)

⊤)∂2σj(t)
(
x1(t)

⊤, y1(t)
⊤, z1(t)

⊤)⊤
+∆σj

x(t)x1(t) + ∆σj
y(t)y1(t) + ∆σj

z(t)z1(t)
]
dW j(t), t ∈ [0, T ],

x2(t) = 0, t ∈ [−δ, 0],

233

where for t ∈ [0, T ], uε(t) := uετ (t), µ
ε(t) := uε(t − δ), Θ(t) := (x∗(t), y∗(t), z∗(t),234

u∗(t), µ∗(t)), κ1 := x, κ2 := y, κ3 := z, and for i, ℓ = 1, 2, 3, f = b, σj ,235

(3.7)


fκi(t) := fκi(t,Θ(t)), fκiκℓ(t) := fκiκℓ(t,Θ(t)),

∆f(t) := f(t, x∗(t), y∗(t), z∗(t), uε(t), µε(t))− f(t,Θ(t)),

∆fκi(t) := fκi(t, x∗(t), y∗(t), z∗(t), uε(t), µε(t))− fκi(t,Θ(t)),

236

for f = b, σj , j = 1, 2, · · · , d, κ11 = x1, κ
2
1 = y1, κ

3
1 = z1,237

∂2f(t):=

( fxx(t) fxy(t) fxz(t)
fyx(t) fyy(t) fyz(t)
fzx(t) fzy(t) fzz(t)

)
, κi1(t)

⊤fκiκℓ(t)κℓ1(t):=

κ
i
1(t)

⊤f1κiκℓ(t)κ
ℓ
1(t)

...
κi1(t)

⊤fnκiκℓ(t)κ
ℓ
1(t)

 ,

and y1(·), z1(·), y2(·), z2(·) are defined similar to (3.1). By Proposition 2.1, under238

Assumption (A1) the variational equations (3.5) and (3.6) admit a unique solution,239

respectively. In the following, we introduce some estimates whose proofs are similar240

to Lemma 3.1 and Lemma 3.2 in [18].241

Lemma 3.1. Let Assumption (A1) hold. Then, for any p ⩾ 1, we have242

(3.8) E
[

sup
0⩽t⩽T

|xε(t)− x∗(t)|2p
]
=O(εp), E

[
sup

0⩽t⩽T
|x1(t)|2p

]
=O(εp),243

(3.9) E
[

sup
0⩽t⩽T

|x2(t)|p
]
=O(εp), E

[
sup

0⩽t⩽T
|xε(t)− x∗(t)− x1(t)|2p

]
=o(εp),244

(3.10) E
[

sup
0⩽t⩽T

|xε(t)− x∗(t)− x1(t)− x2(t)|p
]
=o(εp).245
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Proof. We only prove the estimate (3.10), and the other estimates are similar.246

For simplicity, consider n = m = d = 1. Denote247

X̃ (t) :=xε(t)−x∗(t)−x1(t), X(t) := X̃(t)−x2(t), Ỹ(t) := yε(t)−y∗(t)−y1(t),
Y(t) := Ỹ(t)− y2(t), Z̃(t) :=zε(t)−z∗(t)−z1(t), Z(t) := Z̃(t)−z2(t).

Then, X (·) satisfies the following SDDE:248

(3.11)



dX(t)=
{
bx(t)X (t)+by(t)Y(t)+bz(t)Z(t)+∆bx(t)(x

ε(t)−x∗(t))
+∆by(t)(y

ε(t)−y∗(t))+∆bz(t)(z
ε(t)−z∗(t)) +b̃xx(t)

[
|xε(t)−x∗(t)|2−|x1(t)|2

]
+
[
b̃xx(t)−

1

2
bxx(t)

]
|x1(t)|2 + b̃yy(t)

[
|yε(t)−y∗(t)|2−|y1(t)|2

]
+
[
b̃yy(t)−

1

2
byy(t)

]
|y1(t)|2 + b̃zz(t)

[
|zε(t)−z∗(t)|2−|z1(t)|2

]
+
[
b̃zz(t)−

1

2
bzz(t)

]
|z1(t)|2 + 2b̃xy(t)

[(
xε(t)−x∗(t)

)(
yε(t)−y∗(t)

)
−x1(t)y1(t)

]
+2b̃xz(t)

[(
xε(t)−x∗(t)

)(
zε(t)−z∗(t)

)
−x1(t)z1(t)

]
+2b̃yz(t)

[(
yε(t)−y∗(t)

)
×
(
zε(t)−z∗(t)

)
−y1(t)z1(t)

]
+
[
2b̃xy(t)− bxy(t)

]
x1(t)y1(t)

+
[
2b̃xz(t)−bxz(t)

]
x1(t)z1(t) +

[
2b̃yz(t)−byz(t)

]
y1(t)z1(t)

}
dt

+
{
σx(t)X (t)+σy(t)Y(t)+σz(t)Z(t)+∆σx(t)X̃ (t)+∆σy(t)Ỹ(t)+∆σz(t)Z̃(t)

+σ̃xx(t)
[
|xε(t)−x∗(t)|2−|x1(t)|2

]
+
[
σ̃xx(t)−

1

2
σxx(t)

]
|x1(t)|2 +σ̃yy(t)

[
|yε(t)

−y∗(t)|2−|y1(t)|2
]
+
[
σ̃yy(t)−

1

2
σyy(t)

]
|y1(t)|2 + σ̃zz(t)

[
|zε(t)−z∗(t)|2−|z1(t)|2

]
+
[
σ̃zz(t)−

1

2
σzz(t)

]
|z1(t)|2 + 2σ̃xy(t)

[(
xε(t)−x∗(t)

)(
yε(t)−y∗(t)

)
−x1(t)y1(t)

]
+2σ̃xz(t)

[(
xε(t)−x∗(t)

)(
zε(t)−z∗(t)

)
−x1(t)z1(t)

]
+ 2σ̃yz(t)

[(
yε(t)−y∗(t)

)
×
(
zε(t)−z∗(t)

)
−y1(t)z1(t)

]
+
[
2σ̃xy(t)−σxy(t)

]
x1(t)y1(t)

+
[
2σ̃xz(t)−σxz(t)

]
x1(t)z1(t) +

[
2σ̃yz(t)−σyz(t)

]
y1(t)z1(t)

}
dW(t), t ≥ 0,

X(t)=0, t ∈ [−δ, 0],

249

where250

b̃κiκj (t) =

∫ 1

0

∫ 1

0

λbκiκj (t, x∗(t) + λθ(xε(t)− x∗(t)), y∗(t) + λθ(yε(t)− y∗(t)),

z∗(t) + λθ(zε(t)− z∗(t)), uε(t), µε(t))dθdλ, i, j = 1, 2, 3,

with κ1 = x, κ2 = y, κ3 = z. By the estimate of the solution to (3.11), we obtain251

E sup
0⩽t⩽T

|X (t)|p⩽ME
(∫ T

0

[
|xε(t)−x∗(t)+x1(t)|2|X̃(t)|2+|yε(t)−y∗(t)+ y1(t)|2252

×|Ỹ(t)|2+|zε(t)−z∗(t)+z1(t)|2|Z̃(t)|2+|X̃(t)|2|yε(t)−y∗(t)|2+ |x1(t)Ỹ(t)|2253

+|X̃(t)|2|zε(t)−z∗(t)|2+|x1(t)Z̃(t)|2+|Ỹ(t)|2|zε(t)−z∗(t)|2 + |y1(t)Z̃(t)|2254

+
[
|b̃xx(t)−

1

2
bxx(t)|2+|σ̃xx(t)−

1

2
σxx(t)|2

]
|x1(t)|4+

[
|b̃yy(t)−

1

2
byy(t)|2255

+|σ̃yy(t)−
1

2
σyy(t)|2

]
|y1(t)|4+

[
|b̃zz(t)−

1

2
bzz(t)|2+|σ̃zz(t)−

1

2
σzz(t)|2

]
256

×|z1(t)|4+
[
|2b̃xy(t)−bxy(t)|2+|2σ̃xy(t)−σxy(t)|2

]
|x1(t)y1(t)|2+

[
|2b̃xz(t)257

−bxz(t)|2+|2σ̃xz(t)−σxz(t)|2
]
|x1(t)z1(t)|2+

[
|2b̃yz(t)−byz(t)|2+|2σ̃yz(t)258

−σyz(t)|2
]
|y1(t)z1(t)|2

]
dt
) p

2

+ME
(∫ T

0

[
|∆bx(t)(xε(t)−x∗(t))|+|∆by(t)259

×(yε(t)−y∗(t))|+ |∆bz(t)(zε(t)−z∗(t))|
]
dt
)p
+ME

(∫ T

0

[
|∆σx(t)X̃ (t)|2260

+|∆σy(t)Ỹ(t)|2+ |∆σz(t)Z̃(t)|2
]
dt
) p

2

,(3.12)261
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where M is a constant. By Assumption (A1) and (3.8)-(3.9), we have262

E
(∫ T

0

|xε(t)−x∗(t)+x1(t)|2|X̃(t)|2dt
) p

2

263

⩽E
{

sup
0≤t≤T

|X̃(t)|p
[
sup

0≤t≤T
|xε(t)−x(t)|p+ sup

0≤t≤T
|x1(t)|p

]}
=o(εp),(3.13)264

E
(∫ T

0

|b̃xx(t)−
1

2
bxx(t)|2|x1(t)|4dt

) p
2

265

≤ E
[

sup
0≤t≤T

|x1(t)|2p
(∫ T

0

|b̃xx(t)−
1

2
bxx(t)|2dt

) p
2

]
= o(εp),(3.14)266

E
(∫ T

0

|∆σx(t)X̃ (t)|2dt
) p

2

⩽ E
[

sup
0⩽t⩽T

|X̃ (t)|p
( ∫ T

0

|∆σx(t)|2dt
) p

2
]
= o(εp).(3.15)267

Noting268

E sup
0⩽t⩽T

|z1(t)|p = E sup
0⩽t⩽T

∣∣∣ ∫ t

t−δ

eλ(r−t)x1(r)dr
∣∣∣p ⩽

1

λ
E sup

−δ⩽t⩽T
|x1(t)|p,(3.16)269

we deal with all terms in (3.12) similar to (3.13)-(3.15), and derive the estimate (3.10).270

271

Lemma 3.2. Let Assumption (A1) hold. Suppose (x∗(·), u∗(·)) is an optimal pair,272

xε(·) is the trajectory corresponding to uε(·) by (3.4). Then, the following variational273

inequality holds:274

J(uε(·))−J(u∗(·))=E
[
hx(T )

[
x1(T )+x2(T )

]
+hy(T )

[
y1(T )+y2(T )

]
+hz(T )

[
z1(T )275

+z2(T )
]
+
1

2

(
x1(T )

⊤, y1(T )
⊤, z1(T )

⊤)∂2h(T )(x1(T )⊤, y1(T )⊤, z1(T )⊤)⊤]276

+E
∫ T

0

[
∆l(t)+lx(t)[x1(t)+x2(t)]+ly(t)

[
y1(t)+y2(t)

]
+lz(t)

[
z1(t)+z2(t)

]
277

+
1

2

(
x1(t)

⊤, y1(t)
⊤, z1(t)

⊤)∂2l(t)(x1(t)⊤, y1(t)⊤, z1(t)⊤)⊤]dt+o(ε),(3.17)278

where ∆l, lκi , lκiκℓ , hκi , hκiκℓ are defined similarly as (3.7) for i, ℓ = 1, 2, 3.279

Define280

X1(t) :=

[ x1(t)
y1(t)1(δ,∞)(t)

z1(t)

]
, X2(t) :=

[ x2(t)
y2(t)1(δ,∞)(t)

z2(t)

]
,

and for j = 1, · · · , d,281

A(t, s) :=

[ bx(s) by(s) bz(s)
1(δ,∞)(t− s)bx(s) 1(δ,∞)(t− s)by(s) 1(δ,∞)(t− s)bz(s)

I −e−λδI −λI

]
,

Cj(t, s) :=

[ σj
x(s) σj

y(s) σj
z(s)

1(δ,∞)(t− s)σj
x(s) 1(δ,∞)(t− s)σj

y(s) 1(δ,∞)(t− s)σj
z(s)

0 0 0

]
,

B(t, s) :=

[ ∆b(s)
1(δ,∞)(t− s)∆b(s)

0

]
, Dj(t, s) :=

[ ∆σj(s)
1(δ,∞)(t− s)∆σj(s)

0

]
,

B̄(t,s):=

[ 1
2X1(s)

⊤∂2b(s)X1(s)
1
21(δ,∞)(t−s)X1(s)

⊤∂2b(s)X1(s)
0

]
, ∆Ξj(s):=

[
∆σj

x(s),∆σ
j
y(s),∆σ

j
z(s)
]
,

D̄j(t, s) :=

[ 1
2X1(s)

⊤∂2σj(s)X1(s) + ∆Ξj(s)X1(s)
1(δ,∞)(t− s)

[
1
2X1(s)

⊤∂2σj(s)X1(s) + ∆Ξj(s)X1(s)
]

0

]
.
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Then, by (3.5)-(3.6),282

(3.18) X1(t)=

∫ t

0

[
A(t,s)X1(s)+B(t,s)

]
ds+

d∑
j=1

∫ t

0

[
Cj(t,s)X1(s)+D

j(t,s)
]
dW j(s),283

(3.19) X2(t)=

∫ t

0

[
A(t,s)X2(s)+B̄(t,s)

]
ds+

d∑
j=1

∫ t

0

[
Cj(t,s)X2(s)+D̄

j(t,s)
]
dW j(s).284

By Proposition 2.1 in [30] and Assumption (A1), (3.18) and (3.19) both admit unique285

solutions. Therefore, the above variational inequality (3.17) can be written as286

J(uε(·))− J(u∗(·)) = E
∫ T

0

[
L̄(t)[X1(t) +X2(t)] +

1

2
X1(t)

⊤L(t)X1(t)287

+∆l(t)
]
dt+ E

[
H̄[X1(T ) +X2(T )] +

1

2
X1(T )

⊤HX1(T )
]
+ o(ε).(3.20)288

Here X1(·) and X2(·) satisfy linear SVIEs in (3.18) and (3.19), respectively, and289

H̄ =
[
hx(T ) hy(T ) hz(T )

]
, L̄(t) =

[
lx(t) ly(t) lz(t)

]
,

H =

[
hxx(T ) hxy(T ) hxz(T )
hyx(T ) hyy(T ) hyz(T )
hzx(T ) hzy(T ) hzz(T )

]
, L(t) =

[
lxx(t) lxy(t) lxz(t)
lyx(t) lyy(t) lyz(t)
lzx(t) lzy(t) lzz(t)

]
,

where H̄ is R3n-valued row vector and other terms are similar. Under above prepa-290

ration, we can borrow some useful ideas from [30] where the maximum principle of291

optimal control problems described by SVIEs was completely solved.292

Remark 3.3. In [8], the author directly lifted up the state x(·) along with its293

pointwise delay x(· − δ), and the lifted process satisfies a general SVIE, while in this294

paper, we lift up the variational processes x1(·), x2(·) along with their pointwise delay295

x1(· − δ), x2(· − δ), then X1(·) and X2(·) satisfy linear SVIEs respectively, and are296

easier to deal with later.297

4. Adjoint equations. In this section we introduce some adjoint equations to298

be dual with the variational equations (3.5)-(3.6).299

4.1. First-order adjoint equations. We treat the terms about X1(·) +X2(·)300

in (3.20). From [34], we introduce the first-order adjoint equation as follows:301

(4.1)



(a) η(t) = H̄⊤ −
d∑

j=1

∫ T

t

ζj(s)dW j(s), t ∈ [0, T ],

(b) Y (t) = L̄(t)⊤+A(T,t)⊤H̄⊤+

d∑
j=1

Cj(T,t)⊤ζj(t)+

∫ T

t

[
A(s, t)⊤Y (s)

+

d∑
j=1

Cj(s, t)⊤Zj(s,t)
]
ds−

d∑
j=1

∫ T

t

Zj(t, s)dW j(s), t∈ [0,T ],

(c) Y (t) = EY (t) +

d∑
j=1

∫ t

0

Zj(t, s)dW j(s), t ∈ [0, T ].

302

(4.1) (a) is a BSDE which admits a unique solution by Theorem 4.1 in [23]. On the303

other hand, (4.1) (b) is a linear backward SVIE, and by Proposition 2.3, it admits a304

unique solution that satisfies (4.1) (c) under Assumption (A1). Notice that305

X1(t)+X2(t)=φ(t)+

∫ t

0

A(t, s)
[
X1(s)+X2(s)

]
ds+

d∑
j=1

∫ t

0

Cj(t, s)
[
X1(s)+X2(s)

]
dW j(s),

where306

φ(t) :=

∫ t

0

[
B̄(t, s) +B(t, s)

]
ds+

d∑
j=1

∫ t

0

[
D̄j(t, s) +Dj(t, s)

]
dW j(s).
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Then, by the dual principle ( [34], Theorem 5.1), we have307

E
∫ T

0

L̄(t)
[
X1(t)+X2(t)

]
dt+E

[
H̄
[
X1(T )+X2(T )

]]
=E
∫ T

0

⟨φ(t), Y (t) ⟩dt+E
[
H̄φ(T )

]
.

Let for j = 1, · · · , d,308

(4.2) η(t):=

η0(t)η1(t)
η2(t)

 , ζj(t):=

ζ0j(t)ζ1j(t)
ζ2j(t)

 , Y (t):=

Y 0(t)
Y 1(t)
Y 2(t)

 , Zj(t, s):=

Z0j(t, s)
Z1j(t, s)
Z2j(t, s)

 .309

Then, by (4.1) we deduce310

E
∫ T

0

〈
φ(t), Y (t)

〉
dt+ E

[
H̄φ(T )

]
=E
∫ T

0

∫ t

0

〈
Y (t),B(t, s)+B̄(t, s)

〉
dsdt+

d∑
j=1

E
∫ T

0

∫ t

0

〈
Zj(t, s), Dj(t, s)+D̄j(t, s)

〉
dsdt

+E
[
H̄

∫ T

0

[
B̄(T, s) +B(T, s)

]
ds+

d∑
j=1

∫ T

0

ζj(s)⊤
[
D̄j(T, s) +Dj(T, s)

]
ds

]
,

which together with (3.20) yields that311

J(uε(·))−J(u∗(·))=E
∫ T

0

[
∆l(s)+

1

2
X1(s)

⊤L(s)X1(s)+
〈
∆b(s)+

1

2
X1(s)

⊤∂2b(s)X1(s),312 ∫ T

s

Y 0(t)dt+

∫ T

s+δ

Y 1(t)dt1[0,T−δ)(s)+hx(T )
⊤+hy(T )

⊤1[0,T−δ)(s)
〉
+

d∑
j=1

〈
∆σj(s)313

+
1

2
X1(s)

⊤∂2σj(s)X1(s)+∆Ξj(s)X1(s),

∫ T

s+δ

Z1j(t,s)dt1[0,T−δ)(s)+

∫ T

s

Z0j(t, s)dt314

+ζ0j(s)+ζ1j(s)1[0,T−δ)(s)
〉]
ds+

1

2
EX1(T )

⊤HX1(T )+o(ε).(4.3)315

Next we would like to write (4.3) in a more concise form, and give the main result316

of this subsection. To this end, for j = 1, · · · , d, 0 ⩽ t ⩽ T , let us denote317

(4.4)


p(t) :=η0(t)+η1(t)1[0,T−δ)(t)+Et

[∫ T

t

Y 0(s)ds+

∫ T

t+δ

Y 1(s)ds1[0,T−δ)(t)

]
,

qj(t) :=ζ0j(t)+ζ1j(t)1[0,T−δ)(t)+

∫ T

t

Z0j(s, t)ds+

∫ T

t+δ

Z1j(s, t)ds1[0,T−δ)(t),

318

and G : [0, T ]× Rn × Rn × Rn × Rn × Rn×d × Rm × Rm → R as follows319

(4.5) G(t,x,y,z,p,q,u,µ) := l(t,x,y,z,u,µ)+
〈
p,b(t,x,y,z,u,µ)

〉
+

d∑
j=1

〈
qj ,σj(t,x,y,z,u,µ)

〉
.320

Lemma 4.1. Let Assumption (A1) hold. Suppose (x∗(·), u∗(·)) is an optimal pair,321

xε(·) is the trajectory corresponding to uε(·), given by (3.4), (η(·), ζ(·), Y (·), Z(·, ·)) is322

a solution to (4.1). Then, the following variational inequality holds:323

(4.6) J(uε(·))−J(u∗(·))=E
∫ τ+ε

τ

∆G(t)dt+E
∫ τ+δ+ε

τ+δ

∆G̃(t)dt1[0,T−δ)(τ)+
1

2
E (ε)+o(ε),324

for all v(·) ∈ Uad and τ ∈ [0, T ), where325

(4.7) E (ε) := E
∫ T

0

X1(t)
⊤∂2G(t)X1(t)dt+ E

[
X1(T )

⊤HX1(T )
]
,326

∆G(t) := G(t, x∗(t), y∗(t), z∗(t), p(t), q(t), v(t), u∗(t− δ))

−G(t, x∗(t), y∗(t), z∗(t), p(t), q(t), u∗(t), u∗(t− δ)),

∆G̃(t) := G(t, x∗(t), y∗(t), z∗(t), p(t), q(t), u∗(t), v(t− δ))

−G(t, x∗(t), y∗(t), z∗(t), p(t), q(t), u∗(t), u∗(t− δ)).
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Proof. Notice that327

E
∫ T

0

∫ t

0

〈
Z1j(t, s),1(δ,∞)(t− s)∆σj(s)

〉
dsdt=E

∫ T−δ

0

〈∫ T

s+δ

Z1j(t, s)dt,∆σj(s)
〉
ds

=E
∫ τ+ε

τ

〈∫ T

s+δ

Z1j(t, s)dt, σj(s, x∗(s), y∗(s), z∗(s), v(s), µ∗(s))−σj(s,Θ(s))
〉
ds

×1[0,T−δ)(τ) + E
∫ τ+δ+ε

τ+δ

〈
σj(s, x∗(s), y∗(s), z∗(s), u∗(s), v(s− δ))

−σj(s,Θ(s)),

∫ T

s+δ

Z1j(t, s)dt
〉
ds1(0,T−δ)(τ + δ),

and328 ∣∣∣E ∫ T

0

〈
∆σj

z(s)z1(s),

∫ T

s+δ

Z1j(t, s)dt1[0,T−δ)(s)
〉
ds
∣∣∣

⩽M
(
E
∫ τ+ε

τ

∣∣ ∫ T

s+δ

Z1j(t, s)dt
∣∣2ds) 1

2

ε
1
2

(
E sup

τ⩽s⩽τ+ε
|z1(s)|2

) 1
2

+Mε
1
2

(
E sup

τ+δ⩽s⩽τ+δ+ε
|z1(s)|2

) 1
2
(
E
∫ τ+δ+ε

τ+δ

|
∫ T

s+δ

Z1j(t, s)dt|2ds
) 1

2

= o(ε),

where M is a constant. Then, by applying Lemma 3.1, (4.3) and (4.4), we complete329

the proof.330

4.2. Second-order adjoint equations. To treat the quadratic form in (4.6), let331

us borrow some ideas from [30]. Now we introduce the following systems of backward332

equations:333

(4.8)



(a) P1(r) = H −
d∑

j=1

∫ T

r

Qj
1(θ)dW

j(θ), 0 ⩽ r ⩽ T,

(b) P2(r) = A(T, r)⊤P1(r) +

d∑
j=1

Cj(T, r)⊤Qj
1(r) +

∫ T

r

[
A(θ, r)⊤P2(θ)

+

d∑
j=1

Cj(θ, r)⊤Qj
2(θ, r)

]
dθ−

d∑
j=1

∫ T

r

Qj
2(r, θ)dW

j(θ), 0⩽r⩽T,

(c) P3(r)=∂
2G(r)+

d∑
j=1

Cj(T, r)⊤P1(r)C
j(T, r)

+

d∑
j=1

∫ T

r

[
Cj(T, r)⊤P2(θ)

⊤Cj(θ, r)+ Cj(θ, r)⊤P2(θ)C
j(T, r)

+Cj(θ, r)⊤P3(θ)C
j(θ, r)

]
dθ+

∫ T

r

∫ T

r

Cj(θ, r)⊤P4(θ
′, θ)Cj(θ′, r)dθdθ′

−
d∑

j=1

∫ T

r

Qj
3(r, θ)dW

j(θ), 0⩽ r ⩽T,

(d) P4(θ, r)=A(T, r)
⊤P2(θ)

⊤+

d∑
j=1

Cj(T, r)⊤Qj
2(θ, r)

⊤+A(θ, r)⊤P3(θ)

+

d∑
j=1

Cj(θ, r)⊤Qj
3(θ, r)+

∫ T

r

[ d∑
j=1

Cj(θ′, r)⊤Qj
4(θ, θ

′, r)

+A(θ′, r)⊤P4(θ, θ
′)

]
dθ′−

d∑
j=1

∫ T

r

Qj
4(θ, r, θ

′)dW j(θ′), 0⩽r⩽θ⩽T,

(e) P4(θ, r) = P4(r, θ)
⊤, Q4(θ, r, θ

′) = Q4(r, θ, θ
′)⊤, 0 ⩽ θ < r ⩽ T,

334

subject to the following constraints:335
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(4.9)



P2(r) = Eθ

[
P2(r)

]
+

d∑
j=1

∫ r

θ

Qj
2(r, θ

′)dW j(θ′), 0 ⩽ r ⩽ T,

P3(r) = Eθ

[
P3(r)

]
+

d∑
j=1

∫ r

θ

Qj
3(r, θ

′)dW j(θ′), 0 ⩽ r ⩽ T,

P4(θ, r)=Eθ′
[
P4(θ, r)

]
+

d∑
j=1

∫ r∧θ

θ′
Qj

4(θ, r, s)dW
j(s), 0⩽θ′⩽(θ ∧ r)⩽T.

336

Then, we have the following result for the variational inequality (4.6).337

Lemma 4.2. Let Assumption (A1) hold. Suppose (x∗(·), u∗(·)) is an optimal pair,338

xε(·) is the trajectory corresponding to uε(·), given by (3.4), (η(·), ζ(·), Y (·), Z(·, ·))339

is the solution to (4.1), (p(·), q(·)) is defined by (4.4). Then, (4.8) admits a unique340

adapted solution: (P1(·),Q1(·))∈L2
F(Ω;C([0, T ];S3n))×

(
L2
F(0, T ;S3n)

)d
, (P2(·), P3(·), P4(·, ·))341

∈ L2
F(0, T ;R(3n)×(3n))×L2

F(0, T ;S3n)×L2
(
0, T ;L2

F(0, T ;R(3n)×(3n))
)
, such that (4.9)342

holds. Furthermore, the variational inequality (4.6) can be deduced as follows:343

J(uε(·))− J(u∗(·)) = E
∫ τ+ε

τ

∆G(t)dt+ E
∫ τ+δ+ε

τ+δ

∆G̃(t)dt1[0,T−δ)(τ)344

+
1

2

d∑
j=1

E
∫ T

0

{
Dj(T, t)⊤P1(t)D

j(T, t) +

∫ T

t

Dj(θ, t)⊤P3(θ)D
j(θ, t)dθ345

+

∫ T

t

[
Dj(T, t)⊤P2(θ)

⊤Dj(θ, t) +Dj(θ, t)⊤P2(θ)D
j(T, t)

]
dθ346

+

∫ T

t

∫ T

t

Dj(θ, t)⊤P4(θ
′, θ)Dj(θ′, t)dθdθ′

}
dt+ o(ε), ∀ τ ∈ [0, T ).(4.10)347

Proof. Note that the BSDE (4.8) (a) admits a unique solution. Then, by Propo-348

sition 2.3 and the similar proof of Theorem 5.1 in [30], (4.8) has a unique solution.349

For simplicity, we just give a sketch of the proof, a detailed proof can be referred to350

Section 4 in [30]. In the following, without loss of generality, let d = 1. First we351

introduce an auxiliary process as follows:352

(4.11) X1(t, r)=

∫ r

0

[
A(t, s)X1(s)+B(t, s)

]
ds+

∫ r

0

[
C(t, s)X1(s)+D(t, s)

]
dW (s),353

for 0 ⩽ r ⩽ t ⩽ T . Apparently, X1(t, t) = X1(t) for all 0 ⩽ t ⩽ T . Applying Lemma354

3.1, we have sup
0⩽t⩽T

E
[

sup
0⩽r⩽t

|X1(t, r)|p
]
= O(ε

p
2 ). Let Θ(·, ·) : [0, T ]2×Ω → R(3n)×(3n)355

be a process such that for any t ∈ [0, T ], Θ(t, ·) ∈ L2
F(0, t;R(3n)×(3n)). Then, by356

the martingale representation theorem, for any 0⩽ s⩽ t⩽ T , there exists a unique357

Λ(t, s, ·) ∈
(
L2
F(0, s;R(3n)×(3n))

)d
satisfying358

(4.12) Π(t, s, r) ≡ Er[Θ(t, s)] = Θ(t, s)−
∫ s

r

Λ(t, s, θ)dW (θ), 0 ⩽ r ⩽ s ⩽ t ⩽ T.359

Applying Itô’s formula to the map r 7→X1(t,r)
⊤Θ(t,s)X1(s, r), we obtain for 0⩽r⩽s⩽ t,360

E
[
X1(t, r)

⊤Θ(t, s)X1(s, r)
]
= E

[
X1(t, r)

⊤Π(t, s, r)X1(s, r)
]

361

=E
∫ r

0

{
X1(θ)

⊤[A(t,θ)⊤Θ(t,s)+C(t,θ)⊤Λ(t,s,θ)
]
X1(s,θ)+X1(t,θ)

⊤[Θ(t,s)A(s,θ)+Λ(t,s,θ)362

×C(s,θ)
]
X1(θ)+X1(θ)

⊤C(t,θ)⊤Θ(t,s)C(s,θ)X1(θ)+D(t,θ)⊤Θ(t,s)D(s,θ)
}
dθ+o(ε).(4.13)363
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In the following, we choose different Θ(·, ·), Π(·, ·, ·) and Λ(·, ·, ·) to deal with the364

quadratic terms about X1(·) in (4.7). First we deal with the term X1(T )
⊤HX1(T ).365

Take t = s = T and Θ(T, T ) = H in (4.12). Then, from (4.8) (a), we have366

(Π(T, T, r),Λ(T, T, r)) ≡ (P1(r), Q1(r)), r ∈ [0, T ].
By (4.13), we get367

E
[
X1(T )

⊤HX1(T )
]
= E

[
X1(T, T )

⊤P1(T )X1(T, T )
]

= E
∫ T

0

{
X1(r)

⊤
[
A(T, r)⊤P1(r) + C(T, r)⊤Q1(r)

]
X1(T, r)

+X1(T, r)
⊤
[
P1(r)A(T, r) +Q1(r)C(T, r)

]
X1(r) +X1(r)

⊤C(T, r)⊤

×P1(r)C(T, r)X1(r) +D(T, r)⊤P1(r)D(T, r)

}
dr + o(ε),

which together with (4.7) yields that368

E (ε) = E
∫ T

0

{
X1(r)

⊤
[
A(T, r)⊤P1(r) + C(T, r)⊤Q1(r)

]
X1(T, r)

+X1(T, r)
⊤
[
P1(r)A(T, r) +Q1(r)C(T, r)

]
X1(r) +X1(r)

⊤
[
∂2G(r)

+C(T, r)⊤P1(r)C(T, r)
]
X1(r) +D(T, r)⊤P1(r)D(T, r)

}
dr + o(ε).

Next we deal with the term X1(r)
⊤[· · · ]X1(T, r) and X1(T, r)

⊤[· · · ]X1(r). Take369

t = T in (4.12), let370

(Θ(T, r),Λ(T, θ, r)) ≡ (P2(r)
⊤, Q2(θ, r)

⊤), 0 ⩽ r ⩽ θ ⩽ T.
Then, by (4.13) and (4.8) we obtain371

E(ε)=E
∫ T

0

{
X1(r)

⊤
[
∂2G(r)+C(T,r)⊤P1(r)C(T,r)+

∫ T

r

(
C(T,r)⊤P2(θ)

⊤C(θ,r)372

+C(θ,r)⊤P2(θ)C(T,r)
)
dθ
]
X1(r)+

∫ T

r

[
X1(r)

⊤
(
P2(θ)A(T,r)+Q2(θ,r)C(T,r)

)⊤
X1(θ,r)373

+X1(θ,r)
⊤
(
P2(θ)A(T,r)+Q2(θ,r)C(T,r)

)
X1(r)

]
dθ

}
dr+E

∫ T

0

{∫ T

r

[
D(T,r)⊤374

×P2(θ)
⊤D(θ,r)+D(θ,r)⊤P2(θ)D(T,r)

]
dθ+D(T,r)⊤P1(r)D(T,r)

}
dr +o(ε).(4.14)375

Finally we eliminate the terms X1(r)
⊤[· · · ]X1(r), X1(θ, r)

⊤[· · · ]X1(r) and their376

transpose. Take t = s in (4.12) and let377

Θ(θ, θ) ≡ P3(θ), Λ(θ, θ, r) ≡ Q3(θ, r), 0 ⩽ r ⩽ θ ⩽ T.
Then, from (4.13) we derive378

E
∫ T

0

X1(r)
⊤Θ(r,r)X1(r)dr =o(ε)+E

∫ T

0

∫ T

r

{
X1(r)

⊤
[
A(θ,r)⊤Θ(θ,θ)379

+C(θ,r)⊤Λ(θ,θ,r)
]
X1(θ,r)+X1(θ,r)

⊤
[
A(θ,r)⊤Θ(θ,θ)⊤+C(θ,r)⊤Λ(θ,θ,r)⊤

]⊤
X1(r)380

+X1(r)
⊤C(θ,r)⊤Θ(θ,θ)C(θ,r)X1(r)+D(θ,r)⊤Θ(θ,θ)D(θ,r)

}
dθdr.(4.15)381

Let382

Θ(θ, θ′) = P4(θ, θ
′)⊤, Λ(θ, r, θ′) = Q4(θ, r, θ

′)⊤, 0 ⩽ θ′ ⩽ r ⩽ θ ⩽ T.
Then, by (4.13) we get383

E
∫ T

0

∫ T

r

X1(θ,r)
⊤Θ(θ,r)X1(r)dθdr=E

∫ T

0

{∫ T

r

∫ T

θ

X1(r)
⊤
[
A(θ′, r)⊤Θ(θ′, θ)+C(θ′, r)⊤Λ(θ′, θ, r)

]
×X1(θ, r)dθ

′dθ+

∫ T

r

∫ θ

r

X1(θ, r)
⊤
[
A(θ′, r)⊤Θ(θ, θ′)⊤ + C(θ′, r)⊤Λ(θ, θ′, r)⊤

]⊤
X1(r)dθ

′dθ

+

∫ T

r

∫ T

θ

[
X1(r)

⊤C(θ′, r)⊤Θ(θ′, θ)C(θ, r)X1(r)+D(θ′, r)⊤Θ(θ′, θ)D(θ, r)
]
dθ′dθ

}
dr+o(ε),

which and (4.6), (4.14), (4.15) imply that (4.10) holds.384
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Remark 4.3. It is worth mentioning that the first-order adjoint equation (4.1),385

consisting of a BSDE and a backward SVIE, is dual with the first-order and second-386

order variational equations (3.5)-(3.6), and the second-order adjoint equation (4.8),387

consisting of a BSDE and three coupled backward SVIEs, still can be dual with388

(x1(t)
⊤, y1(t)

⊤,z1(t)
⊤)[· · · ](x1(t)⊤, y1(t)⊤, z1(t)⊤)⊤, even though the pointwise state de-389

lay appears in the state equation and the terminal cost.390

Remark 4.4. To deal with the cross term x1(t)
⊤[· · · ]y1(t) and its transpose, [18]391

introduced a new BSDE but required its solution to be zero. In this paper, we get rid392

of this strict condition. First the delayed variational equations (3.5)-(3.6) are trans-393

formed into the Volterra integral equations without delay (3.18)-(3.19), so that the394

delayed finite dimensional control problem is converted into another finite dimensional395

control problem without delay. Then from the above proof, X1(r)
⊤[· · · ]X1(r) con-396

tains the cross terms x1(t)
⊤[· · · ]y1(t) and y1(t)⊤[· · · ]x1(t), so the auxiliary equation397

(4.11) is constructed and the set of backward SVIEs (4.8) is introduced to deal with398

the “cross terms”, without any additional conditions.399

5. General maximum principle. In this section, we obtain a general max-400

imum principle for Problem (P), and further express first-order and second-order401

adjoint equations in more compact forms.402

5.1. General maximum principle. First let us do some interesting analysis403

of the second-order adjoint equation (4.8). In the following, we suppose τ ∈ [0, T )404

and define405

Pk(·) :=


P

(11)
k (·) P

(12)
k (·) P

(13)
k (·)

P
(21)
k (·) P

(22)
k (·) P

(23)
k (·)

P
(31)
k (·) P

(32)
k (·) P

(33)
k (·)

 , k = 1, 2, 3, 4.

Case I: The term of (P1, Q1).406

By the definition of H, we see that407

(5.1) P
(iℓ)
1 (r) = hκiκℓ(T )−

d∑
j=1

∫ T

r

Q
(iℓ)
1j (θ)dW j(θ), τ ⩽ r ⩽ T,408

where i, ℓ = 1, 2, 3, and κ1 := x, κ2 := y, κ3 := z. In addition,409

Dj(T, t)⊤P1(t)D
j(T, t) = ∆σj(t)⊤P

(11)
1 (t)∆σj(t)410

+∆σj(t)⊤
[
P

(12)
1 (t) + P

(21)
1 (t) + P

(22)
1 (t)

]
∆σj(t)1(δ,∞)(T − t).(5.2)411

Case II: The term of (P2, Q2).412

Let us look at (P2, Q2) in (4.8),413

P
(iℓ)
2 (r) = ψ

(iℓ)
2 (r) +

∫ T

r

g
(iℓ)
2 (θ, r)dθ −

d∑
j=1

∫ T

r

Q
(iℓ)
2j (r, θ)dW j(θ), τ ⩽ r ⩽ T,

where i, ℓ = 1, 2, 3. Set414 {
g
(iℓ)
2 (θ, r)

}3

i,ℓ=1
:= A(θ, r)⊤P2(θ) +

d∑
j=1

Cj(θ, r)⊤Qj
2(θ, r),

{
ψ
(iℓ)
2 (r)

}3

i,ℓ=1
:= A(T, r)⊤P1(r) +

d∑
j=1

Cj(T, r)⊤Qj
1(r).

For j = 1, · · · , d, ℓ = 1, 2, 3 and κ1 := x, κ2 := y, κ3 := z, define for τ ⩽ r ⩽ T ,415

G(ℓ)
2 (r) := hxκℓ(T ) +

∫ T

r

P
(1ℓ)
2 (θ)dθ +

[
hyκℓ(T ) +

∫ T

r+δ

P
(2ℓ)
2 (θ)dθ

]
1[0,T−δ)(r),

Q(ℓ)
2j (r) :=Q

(1ℓ)
1j (r)+

∫ T

r

Q
(1ℓ)
2j (θ, r)dθ+

[
Q

(2ℓ)
1j (r)+

∫ T

r+δ

Q
(2ℓ)
2j (θ, r)dθ

]
1[0,T−δ)(r),
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K(ℓ)
2 (r) := P

(3ℓ)
1 (r) +

∫ T

r

P
(3ℓ)
2 (θ)dθ.

Then, we deduce that for τ ⩽ r ⩽ T ,416

P
(1ℓ)
2 (r) = Er

[
bx(r)

⊤G(ℓ)
2 (r) +

d∑
j=1

σj
x(r)

⊤Q(ℓ)
2j (r) +K(ℓ)

2 (r)

]
,417

P
(2ℓ)
2 (r)=Er

[
by(r)

⊤G(ℓ)
2 (r)+

d∑
j=1

σj
y(r)

⊤Q(ℓ)
2j (r)−e

−λδK(ℓ)
2 (r)

]
,418

P
(3ℓ)
2 (r) = Er

[
bz(r)

⊤G(ℓ)
2 (r) +

d∑
j=1

σj
z(r)

⊤Q(ℓ)
2j (r)− λK(ℓ)

2 (r)

]
.(5.3)419

For the P2 part in (4.10), we have420

Et

∫ T

t

[
Dj(T, t)⊤P2(θ)

⊤Dj(θ, t) +Dj(θ, t)⊤P2(θ)D
j(T, t)

]
dθ421

=∆σj(t)⊤Et

[∫ T

t

(
P

(11)
2 (θ)⊤+P

(11)
2 (θ)+

[
P

(12)
2 (θ)⊤+P

(12)
2 (θ)

]
1[0,T−δ)(t)

)
dθ422

+

∫ T

t+δ

[
P

(21)
2 (θ)⊤+P

(21)
2 (θ)+P

(22)
2 (θ)⊤+P

(22)
2 (θ)

]
dθ1[0,T−δ)(t)

]
∆σj(t).(5.4)423

Case III: The term of (P4, Q4).424

Let us look at (P4, Q4) in (4.8),425

P
(iℓ)
4 (θ, r)=ψ

(iℓ)
4 (θ, r)+

∫ T

r

g
(iℓ)
4 (θ, θ′, r)dθ′−

d∑
j=1

∫ T

r

Q
(iℓ)
4j (θ, r, θ′)dW j(θ′),

where τ ⩽ r ⩽ θ ⩽ T , i, ℓ = 1, 2, 3. Define426 {
ψ
(iℓ)
4 (θ, r)

}3

i,ℓ=1
:=A(T, r)⊤P2(θ)

⊤ +

d∑
j=1

Cj(T, r)⊤Qj
2(θ, r)

⊤
427

+A(θ, r)⊤P3(θ) +

d∑
j=1

Cj(θ, r)⊤Qj
3(θ, r),(5.5)428

(5.6)
{
g
(iℓ)
4 (θ, θ′, r)

}3

i,j=1
:= A(θ′, r)⊤P4(θ, θ

′) +

d∑
j=1

Cj(θ′, r)⊤Qj
4(θ, θ

′, r).429

For ℓ = 1, 2, 3, j = 1, · · · , d and θ ⩾ r, define430

G(ℓ)
4 (θ, r) :=P

(ℓ1)
2 (θ)⊤+P

(1ℓ)
3 (θ)+1(δ,∞)(θ − r)P

(2ℓ)
3 (θ)+1(δ,∞)(T−r)431

×P (ℓ2)
2 (θ)⊤+

∫ T

r

P
(1ℓ)
4 (θ, θ′)dθ′+1(δ,∞)(T−r)

∫ T

r+δ

P
(2ℓ)
4 (θ, θ′)dθ′,432

Q(ℓ)
4j(θ,r):=Q

(ℓ1)
2j (θ,r)⊤+Q

(1ℓ)
3j (θ,r)+1(δ,∞)(θ−r)Q

(2ℓ)
3j (θ,r)+1(δ,∞)(T−r)433

×Q(ℓ2)
2j (θ,r)⊤+

∫ T

r

Q
(1ℓ)
4j (θ,θ′,r)dθ′+

∫ T

r+δ

Q
(2ℓ)
4j (θ,θ′,r)dθ′1(δ,+∞)(T−r),434

K(ℓ)
4 (θ, r) := P

(ℓ3)
2 (θ)⊤ + P

(3ℓ)
3 (θ) +

∫ T

r

P 3ℓ
4 (θ, θ′)dθ′.(5.7)435

Then, for θ ⩾ r, we have436

P
(1ℓ)
4 (θ, r) = Er

[
bx(r)

⊤G(ℓ)
4 (θ, r) +

d∑
j=1

σj
x(r)

⊤Q(ℓ)
4j (θ, r) +K(ℓ)

4 (θ, r)
]
,437

P
(2ℓ)
4 (θ, r) = Er

[
by(r)

⊤G(ℓ)
4 (θ, r)+

d∑
j=1

σj
y(r)

⊤Q(ℓ)
4j(θ, r)−e

−λδK(ℓ)
4 (θ, r)

]
,438

P
(3ℓ)
4 (θ, r) = Er

[
bz(r)

⊤G(ℓ)
4 (θ, r) +

d∑
j=1

σj
z(r)

⊤Q(ℓ)
4j (θ, r)− λK(ℓ)

4 (θ, r)
]
.(5.8)439
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For θ < r, set440

P
(iℓ)
4 (θ, r) := P

(ℓi)
4 (r, θ)⊤, Q

(iℓ)
4 (θ, θ′, r) := Q

(ℓi)
4 (θ′, θ, r)⊤, i, ℓ = 1, 2, 3.

Next we look at the P4 part in (4.10). Denote441

P4(t) :=

∫ T

t

∫ T

t

P
(11)
4 (θ′, θ)dθdθ′ +

(∫ T

t+δ

∫ T

t

P
(12)
4 (θ′, θ)dθdθ′

+

∫ T

t

∫ T

t+δ

P
(21)
4 (θ′, θ)dθdθ′ +

∫ T

t+δ

∫ T

t+δ

P
(22)
4 (θ′, θ)dθdθ′

)
1[0,T−δ)(t).

Then, we have442

(5.9) Et

[∫ T

t

∫ T

t

Dj(θ, t)⊤P4(θ
′, θ)Dj(θ′, t)dθdθ′

]
=∆σj(t)⊤Et

[
P4(t)

]
∆σj(t).443

Case IV: The term of (P3, Q3).444

Now, let us look at (P3, Q3) in (4.8),445

P
(iℓ)
3 (r)=ψ

(iℓ)
3 (r)+

∫ T

r

g
(iℓ)
3 (θ, r)dθ−

d∑
j=1

∫ T

r

Q
(iℓ)
3j (r, θ)dW j(θ), τ⩽r⩽T, i,ℓ = 1, 2, 3.

Define446 {
ψ
(iℓ)
3 (r)

}3

i,ℓ=1
:=∂2G(r)+

d∑
j=1

Cj(T, r)⊤P1(r)C
j(T, r)+

d∑
j=1

∫ T

r

[
Cj(T, r)⊤P2(θ)

⊤Cj(θ, r)

+Cj(θ, r)⊤P2(θ)C
j(T, r)

]
dθ+

d∑
j=1

∫ T

r

∫ T

r

Cj(θ, r)⊤P4(θ
′, θ)Cj(θ′, r)dθdθ′,

{
g
(iℓ)
3 (θ, r)

}3

i,ℓ=1
:=

d∑
j=1

Cj(θ, r)⊤P3(θ)C
j(θ, r).

Then, for ℓ = 1, 2, 3, and κ1 := x, κ2 := y, κ3 := z, we have447

P
(1ℓ)
3 (r) = Gxκℓ(r) +

d∑
j=1

σj
x(r)

⊤Er

[
P(r)

]
σj
κℓ(r), τ ⩽ r ⩽ T,448

P
(2ℓ)
3 (r) = Gyκℓ(r) +

d∑
j=1

σj
y(r)

⊤Er

[
P(r)

]
σj
κℓ(r), τ ⩽ r ⩽ T,449

P
(3ℓ)
3 (r) = Gzκℓ(r) +

d∑
j=1

σj
z(r)

⊤Er

[
P(r)

]
σj
κℓ(r), τ ⩽ r ⩽ T,(5.10)450

where451

P(r):=hxx(T )+
[
hyx(T )+hxy(T )+hyy(T )

]
1[0,T−δ)(r)+

∫ T

r

[
P

(11)
2 (θ)⊤+P

(11)
2 (θ)

]
dθ452

+

∫ T

r

[
P

(12)
2 (θ)⊤+P 12

2 (θ)
]
dθ1[0,T−δ)(r)+

∫ T

r+δ

[
P

(21)
2 (θ)⊤+P

(21)
2 (θ)+P

(22)
2 (θ)⊤453

+P
(22)
2 (θ)

]
dθ1[0,T−δ)(r)+

∫ T

r

∫ T

r

P
(11)
4 (θ′, θ)dθdθ′+

{∫ T

r+δ

∫ T

r

P
(12)
4 (θ′, θ)dθdθ′454

+

∫ T

r

∫ T

r+δ

P
(21)
4 (θ′, θ)dθdθ′+

∫ T

r+δ

∫ T

r+δ

P
(22)
4 (θ′, θ)dθdθ′

}
1[0,T−δ)(r)455

+

∫ T

r

P
(11)
3 (θ)dθ+

∫ T

r+δ

[
P

(21)
3 (θ)+P

(12)
3 (θ)+P

(22)
3 (θ)

]
dθ1[0,T−δ)(r)456

=G(1)
2 (r)+

∫ T

r

G(1)
4 (θ′, r)dθ′+

[
G(2)
2 (r)+

∫ T

r+δ

G(2)
4 (θ′, r)dθ′

]
1[0,T−δ)(r).(5.11)457

Moreover, (5.11) can be reduced to the following form:458

P(r)=ℵ(T,r)⊤P1(T )ℵ(T, r)+
∫ T

r

[
ℵ(T, r)⊤P2(θ)

⊤ℵ(θ, r)+ℵ(θ, r)⊤P2(θ)ℵ(T, r)
]
dθ459
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+

∫ T

r

∫ T

r

ℵ(θ, r)⊤P4(θ
′, θ)ℵ(θ′, r)dθdθ′+

∫ T

r

ℵ(θ, r)⊤P3(θ)ℵ(θ, r)dθ,(5.12)460

where461

(5.13) ℵ(t, s) :=
[
I 1(δ,∞)(t− s)I 0

]⊤
.462

Next, for the P3 part in (4.10), we have463

Et

[ ∫ T

t

Dj(θ, t)⊤P3(θ)D
j(θ, t)dθ

]
= ∆σj(t)⊤Et

{∫ T

t

P
(11)
3 (θ)dθ464

+

∫ T

t+δ

[
P

(12)
3 (θ) + P

(21)
3 (θ) + P

(22)
3 (θ)

]
dθ1(δ,∞)(T − t)

}
∆σj(t).(5.14)465

Based on the above preparation, now we are in a position to state the general466

maximum principle for Problem (P). Recall (4.5) and define the Hamiltonian function467

H : [0, T ]× Rn × Rn × Rn × Rn × Rn×d × Sn × Rm × Rm → R as follows:468

H(τ, x, y, z, p, q,P, u, µ) := G(τ, x, y, z, p, q, u, µ) +

d∑
j=1

Tr
[(
σj(τ, x, y, z, u, µ)

−σj(τ,Θ(τ))
)⊤P(σj(τ, x, y, z, u, µ)− σj(τ,Θ(τ))

)]
.

Theorem 5.1. Let Assumption (A1) hold. Suppose (x∗(·), u∗(·)) is an optimal469

pair, (η(·), ζ(·), Y (·), Z(·, ·)) is the solution to (4.1), (p(·), q(·)) and P(·) are defined470

by (4.4) and (5.11), (P1(·), P2(·), P3(·), P4(·, ·)) is the solution to (4.8)-(4.9). Then,471

the following maximum condition holds:472

(5.15) ∆H(τ) + Eτ

[
∆H̃(τ + δ)1[0,T−δ)(τ)

]
⩾ 0, ∀ v ∈ U, a.e. a.s.473

where474

∆H(τ) := H(τ, x∗(τ), y∗(τ), z∗(τ), p(τ), q(τ),P(τ), v, µ∗(τ))
−H(τ, x∗(τ), y∗(τ), z∗(τ), p(τ), q(τ),P(τ), u∗(τ), µ∗(τ)),

∆H̃(τ) := H(τ, x∗(τ), y∗(τ), z∗(τ), p(τ), q(τ),P(τ), u∗(τ), v)

−H(τ, x∗(τ), y∗(τ), z∗(τ), p(τ), q(τ),P(τ), u∗(τ), µ∗(τ)).

Proof. By Lemma 4.2, (5.2), (5.4), (5.9), (5.14) and (5.11), we obtain475

J(uε(·))− J(u∗(·)) = E
∫ τ+ε

τ

∆G(t)dt+ E
∫ τ+δ+ε

τ+δ

∆G̃(t)dt1[0,T−δ)(τ)

+
1

2

d∑
j=1

E
∫ T

0

Tr[∆σj(t)⊤P(t)∆σj(t)]dt+ o(ε).

Thus, similar to the proof of Theorem 4.1 in [18], we complete the proof.476

Remark 5.2. Noting u(t) and u(t − δ) appear in the diffusion term, the spike477

variation technique is used to deal with Problem (P), thus the cross terms, such478

as x1(t)
⊤[· · · ]y1(t), bring some difficulties to the introduction of adjoint equations,479

some novel methods have been proposed to deal with them, see Remark 4.4. Because480

u(t−δ) appears in Problem (P), the general maximum principle (5.15) consists of two481

parts: Eτ [∆H̃(τ + δ)] characterizes the maximum condition with delay, while ∆H(τ)482

characterizes the one without delay, in similar form to (3.20) in Chapter 3 of [35].483

Remark 5.3. Compared with [18], (i) when the distributed delay appears in the484

control system, the general maximum principle of optimal control for stochastic dif-485

ferential delay systems can be obtained; (ii) the maximum condition (5.15) is similar486

to (5.6) in [18], but all the additional requirements in [18] are removed; (iii) a new set487

of backward SVIEs (4.8) is introduced to deal with the “cross term”, instead of the488

special BSDE (5.3) in [18].489
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Remark 5.4. Consider general distributed measures. Then, we also derive the490

general maximum principle. Let α(·, ·) be a n×n-dimensional bounded deterministic491

function and z(t) =
∫ 0

−δ
α(t, θ)x(t+ θ)dθ. Denote492

E(t, s) :=
∫ t

(t−δ)∨s

α(t, r − t)dr, ℵ(t, s) :=

[
I

1(δ,∞)(t− s)I
E(t, s)

]
,(5.16)493

p(t) :=η0(t)+η1(t)1[0,T−δ)(t)+ E(T, t)⊤η2(t)494

+Et

[∫ T

t

Y 0(s)ds+

∫ T

t+δ

Y 1(s)ds1[0,T−δ)(t) +

∫ T

t

E(s, t)⊤Y 2(s)ds

]
,(5.17)495

qj(t) :=ζ0j(t)+ζ1j(t)1[0,T−δ)(t)+ E(T, t)⊤ζ2j(t)496

+

∫ T

t

Z0j(s, t)ds+

∫ T

t+δ

Z1j(s, t)ds1[0,T−δ)(t)+

∫ T

t

E(s, t)⊤Z2j(s, t)ds.(5.18)497

Then, Theorem 5.1 still holds, where p(·), q(·) are redefined as (5.17)-(5.18) and P(·)498

is defined as (5.12) with (5.16) instead of (5.13).499

5.2. Extensions of adjoint equations. In this subsection, we further explore500

the first-order and second-order adjoint equations (4.1) and (4.8). Interestingly, under501

some cases, (4.1) and (4.8) have more compact forms, similar to the existing literature502

[18, 35,38].503

5.2.1. Extensions of first-order adjoint equations. We rewrite (4.4), and504

define (p̃(·), q̃(·)) as follows: for j = 1, · · · , d,505

(5.19)



p(t) :=η0(t)+η1(t)1[0,T−δ)(t)+Et

[∫ T

t

Y 0(s)ds+

∫ T

t+δ

Y 1(s)ds1[0,T−δ)(t)

]
,

qj(t) :=ζ0j(t)+ζ1j(t)1[0,T−δ)(t)+

∫ T

t

Z0j(s,t)ds+

∫ T

t+δ

Z1j(s,t)ds1[0,T−δ)(t),

p̃(t) :=Et

[ ∫ T

t

Y 2(s)ds

]
+η2(t), q̃j(t) :=

∫ T

t

Z2j(s, t)ds+ζ2j(t).

506

Now we can link the first-order adjoint equation (4.1) with a set of anticipated BSDEs.507

Theorem 5.5. Let Assumption (A1) hold. Suppose (x∗(·), u∗(·)) is an optimal508

pair, (η(·), ζ(·), Y (·), Z(·, ·)) is the solution to (4.1). Then, (p(·), q(·), p̃(·), q̃(·)) defined509

by (5.19) satisfies the following set of anticipated BSDEs:510

(5.20)



p(t)=hx(T )
⊤+

∫ T

t

{
bx(s)

⊤p(s)+

d∑
j=1

σj
x(s)

⊤qj(s)+ lx(s)
⊤+p̃(s)

}
ds

−
d∑

j=1

∫ T

t

qj(s)dW j(s), t ∈ [T − δ, T ],

p(t)=p(T − δ)+ET−δ

[
hy(T )

⊤]+∫ T−δ

t

{
bx(s)

⊤p(s)+

d∑
j=1

σj
x(s)

⊤qj(s)

+lx(s)
⊤+p̃(s)+Es

[
by(s+δ)

⊤p(s+δ)+

d∑
j=1

σj
y(s+ δ)⊤qj(s+δ)

+ly(s+δ)
⊤−e−λδp̃(s+δ)

]}
ds−

d∑
j=1

∫ T−δ

t

qj(s)dW j(s), t∈ [0,T−δ),

p̃(t)=hz(T )
⊤+

∫ T

t

{
bz(s)

⊤p(s)+

d∑
j=1

σj
z(s)

⊤qj(s)+lz(s)
⊤−λp̃(s)

}
ds

−
d∑

j=1

∫ T

t

q̃j(s)dW j(s), t ∈ [0, T ].

511
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Proof. The first two equations of (5.20) can be unified as follows:512

p(t)=hx(T )
⊤+ET−δ

[
hy(T )

⊤1[0,T−δ)(t)
]
+

∫ T

t

{
lx(s)

⊤+ bx(s)
⊤p(s)

+

d∑
j=1

σj
x(s)

⊤qj(s)+p̃(s)+Es

[
by(s+δ)

⊤p(s+δ)+

d∑
j=1

σj
y(s+ δ)⊤qj(s+δ)

+ly(s+δ)
⊤−e−λδp̃(s+δ)

]
1[0,T−δ)(s)

}
ds−

d∑
j=1

∫ T

t

qj(s)dW j(s), t ∈ [0, T ].

For simplicity, in the following, without loss of generality, let d = 1. By (4.2) and513

taking the conditional expectation on both sides of (4.1), it follows that for 0 ⩽ t ⩽ T ,514

Et

[
Y 0(t) + Y 1(t+ δ)1[0,T−δ)(t)

]
= bx(t)

⊤p(t) + σx(t)
⊤q(t) + lx(t)

⊤ + p̃(t)

+Et

[
by(t+δ)

⊤p(t+δ) + σy(t+δ)
⊤q(t+δ) + ly(t+δ)

⊤ − e−λδp̃(t+δ)
]
1[0,T−δ)(t),

and515
Y 2(t) = bz(t)

⊤p(t) + σz(t)
⊤q(t) + lz(t)

⊤ − λp̃(t).
Noting516 ∫ T

t

Es

[∫ s+δ

t

Z1(s+δ,r)dW(r)1[0,T−δ)(s)

]
ds=

∫ T

t

Es

[(∫ s

t

+

∫ s+δ

s

)
Z1(s+δ,r)dW(r)1[0,T−δ)(s)

]
ds

=

∫ T

t

Es

[∫ s

t

Z1(s+ δ, r)dW (r)1[0,T−δ)(s)

]
ds =

∫ T−δ

t

∫ s

t

Z1(s+δ, r)dW (r)ds1[0,T−δ)(t),

from (4.1) (c), one has517 ∫ T

t

Es

[
Y 0(s) + Y 1(s+ δ)1[0,T−δ)(s)

]
ds =

∫ T

t

Es

[
Et

[
Y 0(s)

]
+

∫ s

t

Z0(s, r)dW (r)

+Et

[
Y 1(s+δ)1[0,T−δ)(s)

]
+

∫ s+δ

t

Z1(s+ δ, r)dW (r)1[0,T−δ)(s)

]
ds

=

∫ T

t

Et

[
Y 0(s) + Y 1(s+ δ)1[0,T−δ)(s)

]
ds

+

∫ T

t

[ ∫ T

r

Z0(s, r)ds+

∫ T−δ

r

Z1(s+ δ, r)ds1[0,T−δ)(r)1[0,T−δ)(t)

]
dW (r),

and518 ∫ T

t

Y 2(s)ds=

∫ T

t

[
Et

[
Y 2(s)

]
+

∫ s

t

Z2(s, r)dW(r)

]
ds=Et

[∫ T

t

Y 2(s)ds

]
+

∫ T

t

∫ T

s

Z2(r,s)drdW(s).

Recalling (4.1) (a), one can get519

η0(t)+

∫ T

t

Et

[
Y 0(s)+Y 1(s+δ)1[0,T−δ)(s)1[0,T−δ)(t)

]
ds+η1(t)1[0,T−δ)(t)+

∫ T

t

{
ζ0(r)

+

∫ T

r

[
Z0(r,s)+Z1(r+δ,s)1[0,T−δ)(s)1[0,T−δ)(r)1[0,T−δ)(t)

]
dr + ζ1(s)1[0,T−δ)(s)

}
dW(s)

= hx(T )
⊤+

∫ T

t

{
bx(s)

⊤p(s) + σx(s)
⊤q(s) + lx(s)

⊤ + p̃(s) + Es

[
by(s+ δ)⊤p(s+ δ)

+σy(s+δ)
⊤q(s+δ)+ly(s+δ)

⊤−e−λδp̃(s+δ)
]
1[0,T−δ)(s)

}
ds+ET−δ

[
hy(T )

⊤1[0,T−δ)(t)
]
,

and520

η2(t) +

∫ T

t

Et

[
Y 2(s)

]
ds+

∫ T

t

[
ζ2(r) +

∫ T

r

Z2(s, r)ds

]
dW (r)

= hz(T )
⊤ +

∫ T

t

[
bz(s)

⊤p(s) + σz(s)
⊤q(s) + lz(s)

⊤ − λp̃(s)
]
ds.

Thus, the proof is completed.521
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Remark 5.6. The pointwise state delay appears in the terminal cost, thus the522

equation satisfied by (p(·),q(·)) is split in two parts, for t<T−δ and t>T−δ. Further523

-more, the set of anticipated BSDEs (5.20) can be arranged into an anticipated back-524

ward SVIE. Since the third equation of (5.20) is a linear BSDE, p̃(·) can be expressed525

by (p(·),q(·)), thus, (p(·),q(·)) satisfies the following anticipated backward SVIE:526

p(t)=hx(T )
⊤+ET−δ

[
hy(T )

⊤1[0,T−δ)(t)
]
+
1

λ

(
1−eλ((−δ)∨(t−T ))

)
hz(T )

⊤
527

+

∫ T

t

{
bx(s)

⊤p(s)+

d∑
j=1

σj
x(s)

⊤qj(s)+lx(s)
⊤+Es

[
by(s+δ)

⊤p(s+δ)+

d∑
j=1

σj
y(s+δ)

⊤
528

×qj(s+δ)+ly(s+δ)⊤
]
1[0,T−δ)(s)+Es

[∫ δ∧(T−s)

0

e−λθ

(
bz(s+θ)

⊤p(s+θ)529

+

d∑
j=1

σj
z(s+θ)

⊤qj(s+θ)+lz(s+θ)
⊤
)
dθ

]}
ds−

d∑
j=1

∫ T

t

qj(s)dW j(s), t ∈ [0, T ].(5.21)530

Now the first-order adjoint equation (4.1) can be unified as the anticipated backward531

SVIE (5.21), and is dual with the variational equations (3.5)-(3.6), when the pointwise532

state delay appears in the terminal cost. This is a new finding.533

Remark 5.7. Let hy ≡ 0. Then, by Theorem 5.5, (p(·), q(·)) is the unique solution534

to the following set of anticipated BSDEs:535

(5.22)



−dp(t)=
{
bx(t)

⊤p(t)+

d∑
j=1

σj
x(t)

⊤qj(t)+lx(t)
⊤+p̃(t)+Et

[
ly(t+δ)

⊤+ by(t+δ)
⊤

×p(t+δ)+
d∑

j=1

σj
y(t+δ)

⊤qj(t+δ)−e−λδp̃(t+δ)

]
1[0,T−δ)(t)

}
dt−

d∑
j=1

qj(t)dW j(t),

−dp̃(t)=
{
bz(t)

⊤p(t)+

d∑
j=1

σj
z(t)

⊤qj(t)+lz(t)
⊤−λp̃(t)

}
dt−

d∑
j=1

q̃j(t)dW j(t),

p(T ) = hx(T )
⊤, p̃(T ) = hz(T )

⊤.

536

Notice that [38] assumed that the control domain is convex, and studied the sufficient537

maximum principle for stochastic optimal control problems with general delay. Let538

the noisy memory process there disappears, i.e. Xu
2 (·) ≡ 0. Then, (10)-(11) in [38]539

are the same as (5.22) above.540

Remark 5.8. Let hy, hz ≡ 0. Then, (5.21) becomes a simple anticipated BSDE541

consistent with (5.1) in [18], when the distributed delay disappears in Problem (P).542

5.2.2. Extensions of second-order adjoint equations. In the subsection, we543

study three typical control systems to display second-order adjoint equations clearly.544

Case I: Stochastic optimal control problems without delay545

In this case, Problem (P) becomes a classical stochastic optimal control problem.546

From (5.1), (5.3), (5.8) and (5.10), P
(11)
1 (r), P

(11)
2 (r), P

(11)
3 (r), P

(11)
4 (θ, r) ̸= 0, 0 ⩽547

r, θ ⩽ T , and other terms in (4.8) are all 0. Then, (5.11) becomes548

P1(s)≡P(s)=hxx(T )+

∫ T

s

Er

[
bx(r)

⊤G(1)
2 (r)+

d∑
j=1

σj
x(r)

⊤Q(1)
2j (r)+G

(1)
2 (r)⊤bx(r)+

d∑
j=1

Q(1)
2j (r)

⊤

×σj
x(r)

]
dr+

∫ T

s

{
bx(r)

⊤Er

[∫ T

r

G(1)
4 (θ, r)dθ

]
+

d∑
j=1

σj
x(r)

⊤
∫ T

r

Q(1)
4j (θ,r)dθ

}
dr+

∫ T

s

{(∫ T

r

Er

[
G(1)
4 (θ,

r)⊤
]
dθ

)
bx(r)+

d∑
j=1

(∫ T

r

Q(1)
4j (θ,r)

⊤dθ

)
σj
x(r)

}
dr+

∫ T

s

{
Gxx(r)+

d∑
j=1

σj
x(r)

⊤Er

[
P(r)

]
σj
x(r)

}
dr.
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Denote549

(5.23) P̄ 1(s) := Es

[
P1(s)

]
, Q̄1(s) := Q(1)

2 (s) +

∫ T

s

Q(1)
4 (θ′, s)dθ′.550

Then, (P̄ 1(·), Q̄1(·)) satisfies the following BSDE:551

P̄ 1(s) = hxx(T ) +

∫ T

s

{
bx(t)

⊤P̄ 1(t) +

d∑
j=1

σj
x(t)

⊤Q̄1
j (t) + P̄ 1(t)⊤bx(t)552

+

d∑
j=1

Q̄1
j (t)

⊤σj
x(t) + lxx(t) +

〈
p(t), bxx(t)

〉
+

d∑
j=1

〈
qj(t), σj

xx(t)
〉

553

+

d∑
j=1

σj
x(t)

⊤P̄ 1(t)σj
x(t)

}
dt−

∫ T

s

d∑
j=1

Q̄1
j (t)dW

j(t), s ∈ [0, T ],(5.24)554

which is consistent with (3.9) in [35].555

In fact, we have556

P1(s) = G(1)
2 (s) +

∫ T

s

G(1)
4 (θ′, s)dθ′,

and by (5.23),557

P1(s)=hxx(T )+

∫ T

s

{
bx(t)

⊤P̄ 1(t)+

d∑
j=1

σj
x(t)

⊤Q̄1
j(t)+P̄

1(t)⊤bx(t)+

d∑
j=1

Q̄1
j(t)

⊤σj
x(t)558

+
〈
p(t),bxx(t)

〉
+

d∑
j=1

〈
qj(t),σj

xx(t)
〉
+lxx(t)+

d∑
j=1

σj
x(t)

⊤P̄ 1(t)σj
x(t)

}
dt.(5.25)559

By the first equation of (4.9), we have560

(5.26) hxx(T ) = Es

[
hxx(T )

]
+

d∑
j=1

∫ T

s

Q
(11)
1j (r)dW j(r), s ∈ [0, T ].561

Noting (4.9), for k = 2, 3, i, ℓ = 1, 2, 3, we get562 ∫ T

s

P
(iℓ)
k (θ)⊤dθ=Es

[∫ T

s

P
(iℓ)
k (θ)⊤dθ

]
+

d∑
j=1

∫ T

s

∫ θ

s

Q
(iℓ)
kj (θ, r)⊤dW j(r)dθ563

= Es

[ ∫ T

s

P
(iℓ)
k (θ)⊤dθ

]
+

d∑
j=1

∫ T

s

∫ T

r

Q
(iℓ)
kj (θ, r)⊤dθdW j(r),(5.27)564 ∫ T

s

∫ T

s

P
(iℓ)
4 (θ′, θ)dθdθ′=

∫ T

s

∫ T

s

Es

[
P

(iℓ)
4 (θ′, θ)

]
dθdθ′+

d∑
j=1

∫ T

s

∫ T

r

∫ T

r

Q
(iℓ)
4j (θ′, θ, r)dθdθ′dW j(r).(5.28)565

From (5.25)-(5.28), we obtain566

P1(s) = P̄ 1(s) +

d∑
j=1

∫ T

s

Q̄1
j (t)dW

j(t), s ∈ [0, T ],

which implies (5.24).567

Case II: Stochastic optimal control problems with control delay only568

In this case, by, bz, σy, σz, ly, lz, hy, hz=0. From (5.1), (5.3), (5.8) and (5.10), we have569

P
(11)
1 (r), P

(11)
2 (r), P

(11)
3 (r), P

(11)
4 (θ, r), P

(12)
4 (θ, r) ̸= 0, 0 ⩽ r ⩽ θ ⩽ T,

P
(11)
4 (θ, r), P

(21)
4 (θ, r) ̸= 0, 0 ⩽ θ < r ⩽ T,

and other terms in (4.8) are all 0. From (5.5) and (5.6), we obtain570

ψ
(12)
4 (θ, r) = 0, g

(12)
4 (θ, θ′, r) = bx(r)

⊤P
(12)
4 (θ, θ′) +

d∑
j=1

σj
x(r)

⊤Q
(12)
4j (θ, θ′, r),

and then, for θ⩾r,571

P
(12)
4 (θ,r)=

∫ T

r

[
bx(r)

⊤P
(12)
4 (θ, θ′)+

d∑
j=1

σj
x(r)

⊤Q
(12)
4j (θ, θ′, r)

]
dθ′−

d∑
j=1

∫ T

r

Q
(12)
4j (θ, r, θ′)dW j(θ′).(5.29)572
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On the other hand, recalling (4.9), for θ ⩾ r , we have573

(5.30) P
(12)
4 (θ, r) = Eθ′

[
P

(12)
4 (θ, r)

]
+

d∑
j=1

∫ r

θ′
Q

(12)
4j (θ, r, s)dW j(s).574

By the unique solvability of the backward SVIEs, (5.29) and (5.30) lead to that575

P
(12)
4 (θ, r) = 0, Q

(12)
4 (θ, r, θ′) = 0, θ ⩾ r.

Hence, it follows that for θ ⩾ r,576

G(2)
4 (θ, r) =

∫ T

r

P
(12)
4 (θ, θ′)dθ′ = 0,

Q2
4(θ, r)=

∫ T

r

Q
(12)
4 (θ, θ′, r)dθ′=

∫ θ

r

Q
(12)
4 (θ, θ′, r)dθ′+

∫ T

θ

Q
(21)
4 (θ′, θ, r)⊤dθ′=0.

Then, (5.11) becomes577

P2(s)≡P(s)=hxx(T )+

∫ T

s

Er

[
bx(r)

⊤G(1)
2 (r)+

d∑
j=1

σj
x(r)

⊤Q(1)
2j (r)+G

(1)
2 (r)⊤bx(r)+

d∑
j=1

Q(1)
2j (r)

⊤

×σj
x(r)

]
dr+

∫ T

s

{
bx(r)

⊤Er

[∫ T

r

G(1)
4 (θ, r)dθ

]
+

d∑
j=1

σj
x(r)

⊤
∫ T

r

Q(1)
4j (θ,r)dθ

}
dr+

∫ T

s

{(∫ T

r

Er

[
G(1)
4 (θ,

r)⊤
]
dθ

)
bx(r)+

d∑
j=1

(∫ T

r

Q(1)
4j (θ,r)

⊤dθ

)
σj
x(r)

}
dr+

∫ T

s

{
Gxx(r)+

d∑
j=1

σj
x(r)

⊤Er

[
P(r)

]
σj
x(r)

}
dr.

Denote578

P̄ 2(s) := Es

[
P2(s)

]
, Q̄2(s) := Q(1)

2 (s) +

∫ T

s

Q(1)
4 (θ′, s)dθ′.

Then, similar to Case I, (P̄ 2(·), Q̄2(·)) also satisfies the BSDE (5.24).579

Case III: Linear quadratic stochastic optimal control problems580

Consider the following state equation:581 
dX(t) =

[
A(t)X(t) +B(t)u(t) + B̄(t)u(t− δ)

]
dt

+
[
C̄(t)X(t− δ) +D(t)u(t) + D̄(t)u(t− δ)

]
dW (t), t ∈ [0, T ],

X(t) = ξ(t), u(t) = η(t), t ∈ [−δ, 0],
with the quadratic cost functional582

J(u(·)) = E
[〈
GX(T ), X(T )

〉
+ 2
〈
g,X(T )

〉]
+E
∫ T

0

〈
Q00(t) 0 S00(t)

⊤ S01(t)
⊤

0 Q11(t) S10(t)
⊤ S11(t)

⊤

S00(t) S10(t) R00(t) R01(t)
S01(t) S11(t) R01(t)

⊤ R11(t)




X(t)
X(t− δ)
u(t)

u(t− δ)

 ,


X(t)
X(t− δ)
u(t)

u(t− δ)


〉
dt,

where A(·),B(·),B̄(·),C̄(·),D(·),D̄(·),Q00(·), S00(·),S01(·),Q11(·),S10(·),S11(·),R00(·),583

R01(·),R11(·) are all deterministic functions, and G ∈ Rn×n, g ∈ Rn. In this case,584

(5.1), (5.3), (5.8) and (5.10) become585

P
(11)
1 (r) = G, P

(11)
2 (r) = A(r)⊤

[
P

(11)
1 (r) +

∫ T

r

P
(11)
2 (θ)dθ

]
, 0 ⩽ r ⩽ T,

P
(11)
4 (θ, r) = A(r)⊤G(1)

4 (θ, r), P 12
4 (θ, r) = A(r)⊤G(2)

4 (θ, r), 0 ⩽ r ⩽ θ ⩽ T,

P
(11)
4 (θ, r) = G(1)

4 (r, θ)⊤A(θ), P
(21)
4 (θ, r) = G(1)

4 (r, θ)⊤A(θ), 0 ⩽ θ < r ⩽ T,

P
(11)
3 (r) = Q00(r), P

(22)
3 (r) = Q11(r) + C̄(r)⊤P(r)C̄(r), 0 ⩽ r ⩽ T,

and other terms in (4.8) are all 0. From (5.7) we have586

G(1)
4 (θ, r)=P

(11)
2 (θ)⊤+ P

(11)
3 (θ)+

∫ T

r

[
P

(11)
4 (θ, θ′)+1(δ,∞)(θ

′ − r)P
(21)
4 (θ, θ′)

]
dθ′,

G(2)
4 (θ, r) = 1(δ,∞)(θ − r)P

(22)
3 (θ) +

∫ T

r

P
(12)
4 (θ, θ′)dθ′.
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Let θ − δ ⩽ r ⩽ θ, τ + δ ⩽ θ ⩽ T , and consider587

G(2)
4 (θ, r) =

∫ T

r

P
(12)
4 (θ, θ′)dθ′ =

∫ θ

r

P
(12)
4 (θ, θ′)dθ′ =

∫ θ

r

A(θ′)⊤G(2)
4 (θ, θ′)dθ′.

Then, we have588

G(2)
4 (θ, r) = 0, θ − δ ⩽ r ⩽ θ, τ + δ ⩽ θ ⩽ T.

Hence, (5.11) becomes589

P3(s)≡P(s)=G+

∫ T

s

[
A(r)⊤G(1)

2 (r)+G(1)
2 (r)⊤A(r)

]
dr+

∫ T

s

A(r)⊤
(∫ T

r

G(1)
4 (θ,r)dθ+

∫ T

r+δ

G(2)
4 (θ,r)dθ

)
dr

+

∫ T

s

(∫ T

r

G(1)
4 (θ,r)⊤dθ+

∫ T

r+δ

G(2)
4 (θ, r)⊤dθ

)
A(r)dr+

∫ T

s

Q00(r)dr+

∫ T

s+δ

[
Q11(r)+C̄(r)

⊤P(r)C̄(r)
]
dr.

Similar to Case I, P3(·) satisfies the following ordinary differential equation:590

(5.31)

 −Ṗ3(s) = A(s)⊤P3(s) + P3(s)⊤A(s) +Q00(s) +
[
Q11(s+ δ)

+C̄(s+ δ)⊤P3(s+ δ)C̄(s+ δ)
]
1[0,T−δ)(s), a.e. s ∈ [0, T ],

P3(T ) = G.

591

Remark 5.9. For Case I, when the delay disappears in the control system, the592

equation (5.21) satisfied by (p(·), q(·)), becomes (3.8) in [35]; the equation (5.24)593

satisfied by P(·), becomes (3.9) in [35], and so Theorem 5.1 reduces to Theorem 3.2594

in [35]. For Case II and Case III, (5.21), (5.24) and (5.31) are consistent with (5.1)595

and (5.2) in [18], respectively, thus Theorem 5.1 reduces to Theorem 5.1 in [18].596

6. Concluding remarks. In this paper, a stochastic optimal control problem is597

considered and the control domain is allowed to be non-convex. The pointwise state598

delay, distributed state delay and pointwise control delay can appear in the diffusion599

term and the terminal cost. Via the theory of backward stochastic Volterra integral600

systems, we transform delayed variational equations into Volterra integral equations601

without delay, introduce some new second-order adjoint equations and derive a general602

maximum principle, without any additional conditions. Finally, to express adjoint603

equations more compact, we in detail discuss them for three typical control systems.604
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